细化搜索
结果 1-10 的 208
Clearance of atrazine in soil describing xenobiotic behavior.
1996
Hari T. | Arx R. von | Ammon H.U. | Karlaganis G.
Corn response to six annual Cu-enriched pig manure applications to three soils.
1988
Gettier S.W. | Martens D.C. | Kornegay E.T.
Uptake of terbuthylazine and its medium polar metabolites into maize plants.
1995
Gayler S. | Trapp S. | Matthies M. | Schroll R. | Behrendt H.
Microplastics in plant-soil ecosystems: A meta-analysis 全文
2022
Zhang, Yanyan | Cai, Chen | Gu, Yunfu | Shi, Yuanshuai | Gao, Xuesong
Microplastic pollution is a recognized hazard in aquatic systems, but in the past decade has emerged as a pollutant of interest in terrestrial ecosystems. This paper is the first formal meta-analysis to examine the phytotoxic effects of microplastics and their impact on soil functions in the plant-soil system. Our specific aims were to: 1) determine how the type and size of microplastics affect plant and soil health, 2) identify which agricultural plants are more sensitive to microplastics, and 3) investigate how the frequency and amount of microplastic pollution affect soil functions. Plant morphology, antioxidant production and photosynthesis capacity were impacted by the composition of polymers in microplastics, and the responses could be negative, positive or neutral depending on the polymer type. Phytotoxicity testing revealed that maize (Zea mays) was more sensitive than rice (Oryza sativa) and wheat (Triticum aestivum) within the Poaceae family, while wheat and lettuce (Lactuca sativa) were less sensitive to microplastics exposure. Microplastics-impacted soils tend to be more porous and retain more water, but this did not improve soil stability or increase soil microbial diversity, suggesting that microplastics occupied physical space but were not integrated into the soil biophysical matrix. The meta-data revealed that microplastics enhanced soil evapotranspiration, organic carbon, soil porosity, CO₂ flux, water saturation, nitrogen content and soil microbial biomass, but decreased soil N₂O flux, water stable aggregates, water use efficiency, soil bulk density and soil microbial diversity.
显示更多 [+] 显示较少 [-]The effect of residual hydrocarbons in soil following oil spillages on the growth of Zea mays plants 全文
2020
Grifoni, M. | Rosellini, I. | Angelini, P. | Petruzzelli, G. | Pezzarossa, B.
Liquid hydrocarbon pipeline accidents, including leaks due to the illegal or unauthorized collection of petroleum from oil pipelines, are a widespread phenomenon that can lead to pollution that may negatively affect soil quality and plant growth. The aim of this study is to evaluate hydrocarbon uptake and accumulation in Zea mays plants grown on soil affected by spills of fossil fuels. The experiments were conducted in microcosm, mesocosm and field tests. The potential transfer of contaminants from soil to plant and their effects on plant growth were investigated. The results from both the laboratory and field experiments showed that the plants grew better in the uncontaminated soil than in the soil polluted by hydrocarbons. Despite their significantly lower aerial biomass, plants grown in contaminated soil did not show any significant differences in C > 12 concentration, either in shoots or roots, compared to the control plants. Thus, the decrease in plant yield might not be attributed to hydrocarbons accumulation in the plant tissues and may rather be due to a reduced soil fertility, which negatively affected plant growth.Under our experimental conditions, the hydrocarbons present in the contaminated soil were not absorbed by the plants and did not accumulate in plant tissue or in grains, thus avoiding the risk of them entering the food chain.
显示更多 [+] 显示较少 [-]Effects of ozone on maize (Zea mays L.) photosynthetic physiology, biomass and yield components based on exposure- and flux-response relationships 全文
2020
Peng, Jinlong | Shang, Bo | Xu, Yansen | Feng, Zhaozhong | Calatayud, Vicent
Since the Industrial Revolution, the global ambient O3 concentration has more than doubled. Negative impact of O3 on some common crops such as wheat and soybeans has been widely recognized, but there is relatively little information about maize, the typical C4 plant and third most important crop worldwide. To partly compensate this knowledge gap, the maize cultivar (Zhengdan 958, ZD958) with maximum planting area in China was exposed to a range of chronic ozone (O3) exposures in open top chambers (OTCs). The O3 effects on this highly important crop were estimated in relation to two O3 metrics, AOT40 (accumulated hourly O3 concentration over a threshold of 40 ppb during daylight hours) and POD6 (Phytotoxic O3 Dose above a threshold flux of 6 nmol O3 m−2 s−1 during a specified period). We found that (1) the reduced light-saturated net photosynthetic rate (Asat) mainly caused by non-stomatal limitations across heading and grain filling stages, but the stomatal limitations at the former stage were stronger than those at the latter stage; (2) impact of O3 on water use efficiency (WUE) of maize was significantly dependent on developmental stage; (3) yield loss induced by O3 was mainly due to a reduction in kernels weight rather than in the number of kernels; (4) the performance of AOT40 and POD6 was similar, according to their determination coefficients (R2); (5) the order of O3 sensitivity among different parameters was photosynthetic parameters > biomass parameters > yield-related parameters; (6) Responses of Asat to O3 between heading and gran filling stages were significantly different based on AOT40 metric, but not POD6. The proposed O3 metrics-response relationships will be valuable for O3 risk assessment in Asia and also for crop productivity models including the influence of O3.
显示更多 [+] 显示较少 [-]Tissue level distribution of toxic and essential elements during the germination stage of corn seeds (Zea mays, L.) using LA-ICP-MS 全文
2019
Gaiss, Shelby | Amarasiriwardena, Dulasiri | Alexander, David | Wu, Fengchang
Both essential and toxic metal contaminants impact agricultural crops by bioaccumulation in plants. The goal of this study was to evaluate the tissue-level spatial distribution of metal(loids) in corn seeds (Zea mays, L.) from contaminated corn fields near the Xikuangshan (XKS) antimony mine in Hunan, China, and compared them with corn (Zea mays everta L., popcorn) grown in a farm in Amherst, MA that practices sustainable farming as a control. How toxic and essential metals translocate through the roots and shoots during early stages of germination was also investigated. The cleaned corn seed samples were mounted in resin blocks and longitudinally dissected into thin sections. The laser ablation parameters were optimized, and the instrument was calibrated using tomato leaf standard reference material (NIST SRM 1573a) in a pellet form. Tissue level distributions of metal(loid)s As, Cd, Hg, Sb and Zn in corn seeds collected were determined using (LA-ICP-MS). Seeds from the control farm were germinated and their roots and shoots were analyzed to determine tissue level concentrations and their spatial distributions. It was found that seeds from the XKS mine region in China had higher overall concentration of all elements analyzed due to metal(loids) absorbed from contaminated mine soils. Metal(loids) concentrations were highest in the embryo (∼360 mg/kg) and pericarp (∼0.48 mg/kg) compared with the endosperm of corn seeds. Essential element Zn was found in the embryo and emerging coleoptile and radicle. Finally, in both roots and shoots, element concentrations were highest proximally to the tip cap compared to distal concentrations and later translocated to distal tissue regions. This study offers unique insights of metal(loid) bioaccumulation and translocation in corn and thus is better able to track metal(loids) contaminants trafficking in our food systems.
显示更多 [+] 显示较少 [-]Developmental toxicity of two common corn pesticides to the endangered southern bell frog (Litoria raniformis) 全文
2011
Choung, Catherine B. | Hyne, Ross V. | Mann, Reinier M. | Stevens, Mark M. | Hose, Grant C.
To examine the link between corn agriculture and the observed decline of the endangered southern bell frog (SBF), the effects of two corn crop pesticides on larval growth and development were investigated. Tadpoles were exposed to terbufos sulfone (10 μg/L), a major breakdown product of the insecticide terbufos, and the herbicide atrazine (25 μg/L) individually and as a mixture until the completion of metamorphosis. Atrazine did not interact synergistically with terbufos sulfone or result in significant effects on growth and development alone, although there was some indication of accelerated metamorphosis in the pilot study. Terbufos sulfone alone and as a mixture (terbufos/atrazine) significantly slowed larval development and ultimately delayed metamorphosis. The observed developmental effects from an environmentally relevant concentration of terbufos sulfone indicates a risk posed by this persistent degradation product to the endangered SBF, which breeds and develops in the rice bays adjacent to corn fields treated with pesticides.
显示更多 [+] 显示较少 [-]Transcriptional insights into Cu related tolerance strategies in maize linked to a novel tea-biochar 全文
2022
Pehlivan, Necla | Wang, Jim J.
One-third of maize cultivation in Turkey has been performed in nutrient-rich soils of the coastal agricultural lands of the Black Sea Region, which is among the country's granaries. However, the yield of this chief crop is affected by Cu toxicity due to a decades-long abandoned opencast Cu-mine. As part of the modern agenda, against this problem, we valorized one of the region's signature plant waste by synthesizing a tea-derived biochar (BC) and evaluated for remediation effect on maize Cu tolerance. Among other rates (0%, 0.4%, 0.8%, 1.6%), maximum Cu absorption (168.27 mg kg⁻¹) was found in the 5%BC in in-vitro spiking experiments where natural Cu contamination levels were mimicked. Obvious increasing trends in both root and shoot tissues of maize plantlets growing in Cu-spiked soil (260.26 ± 5.19 mg Cu kg⁻¹) were recorded with proportionally increasing BC application rates. The black tea waste-BC (5%) amendment remarkably reduced the Cu uptake from Cu spiked-soil and showed no phenotypic retardation in maize. Accordingly, it boosted the metabolic and transcriptomic profile owing to up-regulation in the aquaporin and defense genes (PIP1;5 and POD1) by 1.31 and 1.6 fold. The tea-BC application also improved the soil-plant water relations by minimizing cytosolic volume changes between 85 and 90%, increasing chlorophyll intactness (65%) and membrane stability up to 41%. The tea-BC could be a strong agent with potential agronomic benefits in the remediation of the cationic Cu toxicity that occurred in the mining-contaminated agricultural soils.
显示更多 [+] 显示较少 [-]C-offset and crop energy efficiency increase due industrial poultry waste use in long-term no-till soil minimizing environmental pollution 全文
2021
Romaniw, Jucimare | de Moraes Sá, João Carlos | Lal, R. | de Oliveira Ferreira, Ademir | Inagaki, Thiago Massao | Briedis, Clever | Gonçalves, Daniel Ruiz Potma | Canalli, Lutécia Beatriz | Padilha, Alessandra | Bressan, Pamela Thaísa
Brazil is one of the major global poultry producers, and the organic waste generated by the chicken slaughterhouses can potentially be used as a biofertilizer in agriculture. This study was designed to test the hypothesis that continuous use of biofertilizer to the crops, substituting the use of mineral fertilizer promote C-offset for the soil and generate crop energy efficiency for the production system. Thus, the objectives of this study were to evaluate the effects of biofertilizer use alone or in combination with mineral fertilizer on soil organic carbon (SOC) stock, carbon dioxide (CO₂) mitigation, C-offset, crop energy efficiency and productivity, and alleviation of environmental pollution. The experiment was established in southern Brazil on a soil under 15 years of continuous no-till (NT). Experimental treatments were as follows: i) Control with no fertilizer application, ii) 100% use of industrial mineral fertilizer (Min-F); iii) 100% use of organic waste originated from poultry slaughterhouses and hereinafter designated biofertilizer (Bio-F), and iv) Mixed fertilizer equivalent to the use of 50% mineral fertilizer + 50% of biofertilizer (Mix-F). Effects of experimental treatments were assessed for the crop sequence based on bean (Phaseolus vulgaris), soybean (Glycine max) and corn (Zea mays) in the summer and wheat (Triticum aestivum) and black oat (Avena strigosaSchreb) in the winter composing two crops per year, as follow: bean/wheat-soybean/black oat-corn/wheat-soybean/black oat-corn/wheat-bean. The continuous use of Bio-F treatment significantly increased the index of crop energy efficiency. It was higher than that of control, and increased it by 25.4 Mg CO₂eq ha⁻¹ over that of Min-F treatment because of higher inputs of crop biomass-C into the system. Further, continuous use of Bio-F resulted in a significantly higher CO₂eq stock and offset than those for Min-F treatment. A positive relationship between the C-offset and the crop energy efficiency (R² = 0.71, p < 0.001) indicated that the increase of C-offset was associated with the increase of energy balance and the amount of SOC sequestered. The higher energy efficiency and C-offset by application of Bio-F indicated that the practice of crop bio fertilization with poultry slaughterhouse waste is a viable alternative for recycling and minimizing the environmental impacts.
显示更多 [+] 显示较少 [-]