细化搜索
结果 1-10 的 12
Batch and Column Studies on Nickle and Cadmium Removal Using Iranian Clay-based Geopolymer
2021
Bakhtiari, Somayeh | Zeidabadinejad, Asma | Abbaslou, Hanieh | Ghanizadeh, Alireza
The production rate of industrial and agricultural waste is increasing due to population growth. Soil is the most important receiver of industrial and agricultural waste. Contaminants such as heavy metals in various waste after reception by the soil, immediately become part of the cycle that has different impacts on the environment. Geopolymer, as a chemical stabilizer has the potential to stabilize heavy metals in the soil. In this research, several geopolymers for the stabilization of heavy metals in soil were synthesized. Silicon dioxide (SiO2) and aluminosilicate (Al2SiO4) must be used to produce the geopolymers. Rice husk ash was used as the SiO2 source. Also, Iranian zeolite and sepiolite, and red clay soil were utilized as the source of Al2SiO4. The synthesized geopolymers were investigated for the adsorption of nickel and cadmium. Also, batch and column studies of using geopolymers for the chemical stabilization of heavy metals in soil were conducted. The results revealed a high adsorption capacity of the geopolymers. The zeolite, sepiolite, and red clay geopolymer-soil samples adsorbed 100% of the heavy metals (i.e., Ni and Cd) at a concentration of 100 ppm. The zeolite geopolymer adsorbent adsorbed 57% and 96% of Ni and Cd at a concentration of 1000 ppm, respectively. In general, it was concluded that the use of geopolymer compounds in soils with high heavy metal adsorption capacity could be an efficient approach to prevent groundwater resource pollution.
显示更多 [+] 显示较少 [-]The possibility of removing heavy metals from waste waters by natural zeolites
1997
Pasalic, S. | Grbavcic, M. | Barbic, F. | Pljakic, E. (Institut za tehnologiju nuklearnih i drugih mineralnih sirovina, Beograd (Yugoslavia))
Over the last several years, the investigations of the natural zeolites application in the sorption processes have been intensified. Purification of waste waters in order to remove lead, cadmium, copper and other heavy metals, is one significant example of such application. In this paper, the investigations results on characteristics of the natural and chemically activated zeolites from the region of Vranje (Serbia, Yugoslavia), are presented. The experiments with zeolites were performed after determination of their physico-chemical characteristics. Adsorptive characteristics were investigated under laboratory conditions, in a liquid medium, depending on granulation and concentration of the heavy metals. As the obtained results show, these natural materials can be used to remove heavy metals from the waste waters.
显示更多 [+] 显示较少 [-]Removal of xenobiotics from effluent discharge by adsorption on zeolite and expanded clay: an alternative to activated carbon? | Adsorption de micropolluants par la zéolite et l'argile expansée
2014
Tahar, A. | Choubert, J.M. | Miege, Cecile | Esperanza, M. | Le Ménach, K. | Budzinski, H. | Wisniewski, Christelle | Coquery, Marina | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | SUEZ ENVIRONNEMENT (FRANCE) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; Observatoire aquitain des sciences de l'univers (OASU) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Démarche intégrée pour l'obtention d'aliments de qualité (UMR Qualisud) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
[Departement_IRSTEA]Ecotechnologies [TR1_IRSTEA]TED [Axe_IRSTEA]TED-EPURE | International audience | Xenobiotics such as pesticides and pharmaceuticals are an increasingly large problem in aquatic environments. A fixed-bed adsorption filter, used as tertiary stage of sewage treatment, could be a solution to decrease xenobiotics concentrations in wastewater treatment plants (WWTPs) effluent. The adsorption efficiency of two mineral adsorbent materials (expanded clay (EC) and zeolite (ZE)), both seen as a possible alternative to activated carbon (AC), was evaluated in batch tests. Experiments involving secondary treated domestic wastewater spiked with a cocktail of ten xenobiotics (eight pharmaceuticals and two pesticides) known to be poorly eliminated in conventional biological process were carried out. Removal efficiencies and partitions coefficientswere calculated for two levels of initial xenobiotic concentration, i.e, concentrations lower to 10 microg/L and concentrations ranged from 100 to 1,000 microg/L. While AC was the most efficient adsorbent material, both alternative adsorbent materials showed good adsorption efficiencies for all ten xenobiotics (from 50 to 100 % depending on the xenobiotic/adsorbent material pair). For all the targeted xenobiotics, at lower concentrations, EC presented the best adsorption potential with higher partition coefficients, confirming the results in terms of removal efficiencies. Nevertheless, Zeolite presents virtually the same adsorption potential for both high and low xenobiotics concentrations to be treated. According to this first batch investigation, ZE and EC could be used as alternative absorbent materials to AC in WWTP.
显示更多 [+] 显示较少 [-]Multi-ionic interaction with magnesium doped hydroxyapatite-zeolite nanocomposite porous polyacrylonitrile polymer bead in aqueous solution and spiked groundwater
2022
G, Alagarsamy | P, Nithiya | R, Sivasubramanian | R, Selvakumar
Removal of multi-ionic contaminants from water resources has been a major challenge faced during the treatment of water for drinking and industrial applications. In the present study, varying composition of magnesium doped hydroxyapatite (Mg-HAp) and zeolite nanocomposite embedded porous polymeric beads were synthesized using solvent displacement method and its sorption efficiency towards multi-ion contaminant (such as Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Tl, Th, U, V and Zn) was investigated in aqueous solution and spiked groundwater. The prepared beads were characterized using suitable techniques like high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) equation. The surface area and pore radius of the beads varied from 6.996 to 66.469 m²/g and 1.698–3.960 nm respectively according to the composition of the bead. The control bead without nanocomposite showed maximum surface area. Multi-ion adsorptions onto beads were confirmed using an inductively coupled plasma-optical emission spectrophotometer (ICP-OES) and X-ray photoelectron spectrophotometer (XPS). The sorption efficiency was high at pH 5 owing to its anionic surface charge leading to an increase in affinity towards the cations. For validating field application, selected high performance beads were tested in multi-ion spiked groundwater. The results indicated that the Mg-HAp nanocomposite bead dominate all the other bead compositions with more than 90% removal efficiency for most of the multi-ion contaminants. The feasible adsorption mechanism has been discussed. This adsorption study revealed that the Mg-HAp nanocomposite bead is a promising material that is cost-effective, non-toxic, biodegradable, eco-friendly and highly efficient towards the removal of multi-ionic contaminants from groundwater.
显示更多 [+] 显示较少 [-]Bioaugmentation with zeolite-immobilized bacterial consortium OPK results in a bacterial community shift and enhances the bioremediation of crude oil-polluted marine sandy soil microcosms
2022
Laothamteep, Natthariga | Naloka, Kallayanee | Pinyakong, Onruthai
A pyrene-degrading consortium OPK containing Mycolicibacterium strains PO1 and PO2, Novosphingobium pentaromativorans PY1 and Bacillus subtilis FW1 effectively biodegraded medium- and long-chain alkanes as well as mixed hydrocarbons in crude oil. The detection of alkB and CYP153 genes in the genome of OPK members supports its phenotypic ability to effectively degrade a broad range of saturated hydrocarbons in crude oil. Zeolite-immobilized OPK was developed as a ready-to-use bioproduct and it exhibited 74% removal of 1000 mg L⁻¹ crude oil within 96 h in sterilized seawater without nutrient supplementation and maintained high crude oil-removal activity under a broad range of pH values (5.0–9.0), temperatures (30–40 °C) and salinities (20–60‰). In addition, the immobilized OPK retained a high crude oil removal efficacy in semicontinuous experiments and showed reusability for at least 5 cycles. Remarkably, bioaugmentation with zeolite-immobilized OPK in sandy soil microcosms significantly increased crude oil (10,000 mg kg⁻¹ soil) removal from 45% to 80.67% within 21 days compared to biostimulation and natural attenuation. Moreover, bioaugmentation with exogenous immobilized OPK stimulated an increase in the relative abundances of Alcanivorax genus, indigenous hydrocarbon-degrading bacteria, which in turn enhanced removal efficiency of crude oil contamination from sandy soil microcosms. The results indicate positive interactions between the bioaugmented immobilized consortium, harboring Mycolicibacterium as a key player, and indigenous Alcanivorax, which exhibited crucial functions for improving crude oil removal efficacy. The knowledge obtained forms an important basis for further synthesis and handling of a promising bio-based product for enhancing the in situ bioremediation of crude oil-polluted marine environments.
显示更多 [+] 显示较少 [-]Reduction of nitrate using biochar synthesized by Co-Pyrolyzing sawdust and iron oxide
2021
Han, Eun-Yeong | Kim, Bo-Kyong | Kim, Hye-Bin | Kim, Jong-Gook | Lee, Jae-Young | Baek, Kitae
Nitrate is the most common contaminant in groundwater in Korea, as well as across the world. Reduction of nitrate to ammonia is one of the options available to remediate groundwater. In this study, nitrate in groundwater was removed using a zero-valent iron (ZVI) containing biochar synthesized by co-pyrolyzing iron oxide and sawdust biomass. Among the various biogases generated during the pyrolysis of biomass, CO and H₂ act as reducing agents to transform iron oxides to ZVI. Approximately 71% of nitrate was reduced to ammonium by ZVI-biochar at initial pH 2.0, and the reduction decreased sharply by the increase in pH. The mass of nitrate-N decreased is exactly same with the mass of ammonia-N formed. However, ammonium remained in the aqueous phase after reduction by ZVI-biochar, and the total nitrogen was not lowered. Acid-washed zeolite adsorbed most ammonium reduced by the ZVI-biochar and maintained the pH to acidic condition to facilitate the reduction of nitrate. The results of this study imply that nitrate-contaminated groundwater can be properly treated within the guidelines of water quality by synthesized ZVI-containing biochar.
显示更多 [+] 显示较少 [-]Catalytic upgrading of Quercus Mongolica under methane environment to obtain high yield of bioaromatics
2021
Farooq, Abid | Moogi, Surendar | Kwon, Eilhann E. | Lee, Jechan | Kim, Young-Min | Jae, Jungho | Jung, Sang-Chul | Park, Young-Kwon
This work investigated the impact of pyrolysis medium and catalyst on the production of bio-BTX (benzene, toluene, and xylene) from Quercus Mongolica (Q. Mongolica) via catalytic pyrolysis. Two different pyrolysis media (N₂ and CH₄) and five different zeolite catalysts (HY, HBeta, HZSM-5, 1 wt% Ni/HZSM-5, and 1 wt% Ga/HZSM-5) were considered for the Q. Mongolica pyrolysis. The HZSM-5 yielded more BTX than the HY and HBeta due to its strong acidity. The employment of CH₄ as the pyrolysis medium improved the BTX yield (e.g., 2.7 times higher total BTX yield in CH₄ than in N₂) and resulted in low coke yield (e.g., 5.27% for N₂-pyrolysis and 2.57% for CH₄-pyrolysis) because the CH₄-drived hydrogen simulated a hydropyrolysis condition and facilitated dehydroaromatization reaction. CH₄ also led to direct coupling, Diels-Alder, and co-aromatization reactions during the pyrolysis, contributing to enhancing the BTX yield. The addition of Ga to the HZSM-5 could further increase the BTX yield by means of facilitating hydrocracking/demethylation and methyl radical formation from CH₄ assisting the generation of >C2 alkenes that could be further converted into BTX on acid sites of the HZSM-5.
显示更多 [+] 显示较少 [-]Preliminary investigation on the use of natural zeolites for pig slurry odor control
1992
Balsari, P. | Bertolotto, C. (Turin Univ. (Italy). Inst. of Agricultural Mechanics)
In situ microbial remediation of crude oil-soaked marine sediments using zeolite carrier with a polymer coating
2018
Zhao, Guoqiang | Sheng, Yanqing | Wang, Chuanyuan | Yang, Jian | Wang, Qiaoning | Chen, Lingxin
Marine oil spill pollution is an important environmental problem in the world, especially crude oil-soaked marine sediments, because they are difficult to be remediated. In this study, in situ bioremediation of oil-soaked sediment was performed in the middle of the Bohai Sea. Oil-degrading bacteria were adsorbed on powdery zeolite (PZ)/granular zeolites (GZ) surfaces and then wrapped with poly-γ glutamic acid (γ-PGA). Settling column and wave flume experiments were conducted to model marine conditions and to select appropriate biological reagents. The optimal conditions were as follows: the average diameter of GZ 3 mm, mass ratio of GZ/PZ 2:1, and concentration of γ-PGA 7%. After bioremediation, over 50% of most oil-spilled pollutants n-alkanes (C12 to C27) and polycyclic aromatic hydrocarbons were degraded in 70 days. This work resulted in a successful trial of in situ bioremediation of oil-soaked marine sediments.
显示更多 [+] 显示较少 [-]High catalytic activity of Pt–Pd containing USY zeolite catalyst for low temperature CO oxidation from industrial off gases
2015
Lokhande, Suchita | Doggali, Pradeep | Rayalu, Sadhana | Devotta, Sukumar | Labhsetwar, Nitin
Small amounts (0.15wt%) of platinum and palladium were incorporated in porous, high surface area, ultra–stable H–USY–Zeolite by ion exchange method, and their catalytic activity was studied for carbon monoxide (CO) oxidation reaction, under various conditions of industrial importance. The catalyst was characterized by p–XRD, chemical analysis, SEM, TEM, evaluated for catalytic activity using a steady state, fixed bed catalytic reactor. The catalysts show high CO oxidation activity and it was possible to convert 0.044 mmols of CO per gram of catalyst at 120 °C, at a space velocity of 60 000 h−1 and with 100 ppm CO concentration in feed gas. The high catalytic activity of this noble metal catalyst also appears to be a factor of porous structure of zeolite facilitating mass transfer; high surface area as well as highly dispersed catalyst sites of palladium and platinum on zeolite structure. Introduction of acidic sites in zeolites probably makes them more resistant towards SO2, while their surface area and pore characteristics make this catalyst efficient even under high space velocity conditions, thus suggesting the potential of larger pore size zeolites over conventional porous materials for industrial applications.
显示更多 [+] 显示较少 [-]