细化搜索
结果 1-10 的 32
Microplastic retention by marine vegetated canopies: Simulations with seagrass meadows in a hydraulic flume
2021
de los Santos, Carmen B. | Krång, Anna-Sara | Infantes, Eduardo
Marine canopies formed by seagrass and other coastal vegetated ecosystems could act as sinks of microplastics for being efficient particle traps. Here we investigated for the first time the occurrence of microplastic retention by marine canopies in a hydraulic flume under unidirectional flow velocities from 2 to 30 cm s⁻¹. We used as model canopy-forming species the seagrass Zostera marina with four canopy shoot density (0, 50, 100, 200 shoots m⁻²), and we used as microplastic particles industrial pristine pellets with specific densities from 0.90 to 1.34 g cm⁻³ (polypropylene PP; polystyrene PS; polyamide 6 PA; and polyethylene terephthalate PET). Overall, microplastics particles transported with the flow were retained in the seagrass canopies but not in bare sand. While seagrass canopies retained floating microplastics (PP) only at low velocities (<12 cm s⁻¹) due to a barrier created by the canopy touching the water surface, the retention of sinking particles (PS, PA, PET) occurred across a wider range of flow velocities. Our simulations revealed that less dense sinking particles (PS) might escape from the canopy at high velocities, while denser sinking particles can be trapped in scouring areas created by erosive processes around the eelgrass shoots. Our results show that marine canopies might act as potential barriers or sinks for microplastics at certain bio-physical conditions, with the probability of retention generally increasing with the seagrass shoot density and polymer specific density and decreasing with the flow velocity. We conclude that seagrass meadows, and other aquatic canopy-forming ecosystems, should be prioritized habitats in assessment of microplastic exposure and impact on coastal areas since they may accumulate high concentration of microplastic particles that could affect associated fauna.
显示更多 [+] 显示较少 [-]Elevated mercury concentrations in biota despite reduced sediment concentrations in a contaminated coastal area, Harboøre Tange, Denmark
2020
Bjerregaard, Poul | Schmidt, Torben Grau | Mose, Maria Pedersen
Metals sequestered in coastal sediments are normally considered to be stable, but this investigation shows – somewhat surprisingly – that mercury concentrations in a previously contaminated area, Harboøre Tange, Denmark, have decreased since the 1980s. Mercury concentrations were determined in sediment and benthic biota and present values were compared to values in the 1980s and values from areas without known; history of mercury contamination. Concentrations in both the upper 20 cm of the sediments and; biota are considerably lower now compared to latest monitoring (1980s). Sediment.concentrations at most locations have decreased from the 100–300 ng Hg g⁻¹ dry weight (dw) level to levels below the Background Concentration (BC) of 50 ng Hg g⁻¹ dw defined by Oslo-Paris Convention for the Protection of the Marine Environment of the North-East Atlantic; some stations are at the 2–10 ng Hg g⁻¹ dw level characteristic of Danish coastal sediments with no known history of mercury contamination. Concentrations of mercury in the benthic biota along Harboøre Tange have also decreased since the 1980s but despite the lowered mercury concentrations in the sediments, concentrations in most samples of benthic invertebrate fauna still exceed those in uncontaminated coastal areas and also the Environmental Quality Standard (EQS) of 20 ng Hg g⁻¹ wet weight (≈100 ng Hg g⁻¹ dry weight) defined by the European Union’s Water Framework Directive. Concentration ranges in selected organisms are: (Harboøre Tange l980s/Harboøre Tange now/uncontaminated areas - given in ng Hg g⁻¹ dw): Periwinkles Littorina littorea 9000/150–450/55-77, blue mussels Mytilus edulis up to 9000/300–500/40–170, cockles Cerastoderma edule up to 8000/400–1200/200, brown shrimp Crangon crangon 700–2200/150-450/47, eelgrass Zostera marina up to 330/25–70/12. The present results - together with a literature review - show that a simple and straight forward relationship between the concentrations of mercury in sediment and benthic organisms does not necessarily exist.
显示更多 [+] 显示较少 [-]Do adult eelgrass shoots rule seedling fate in a large seagrass meadow in a eutrophic bay in northern China?
2022
Xu, Shaochun | Xu, Shuai | Zhou, Yi | Yue, Shidong | Zhang, Xiaomei | Gu, Ruiting | Zhang, Yu | Qiao, Yongliang | Liu, Mingjie | Zhang, Yunling | Zhang, Zhenhai
We conducted field sampling over 19 months to investigate eelgrass population reproduction status and ecological interactions in a large seagrass meadow in a eutrophic bay in northern China. The results showed asexual growth played an important role in the maintenance of existing meadows, and sexual reproduction played a critical role in the colonization of new areas. We conclude that adult eelgrass shoots do rule the fate of seedlings in the large seagrass meadow. Additionally, nutrient resources (N and P) at this location were found to meet eelgrass growth demand. The N/P ratios of seawater and seagrass indicated N limitation relative to P in the eutrophic bay based on the seagrass Redfield ratio (25–30). Nutrient uptake by seagrass might be an important factor in reducing the probability of a red tide in the study area. The results of this study provide fundamental information for eelgrass restoration and conservation.
显示更多 [+] 显示较少 [-]Effects of depth and overgrowth of ephemeral macroalgae on a remote subtidal NE Atlantic eelgrass (Zostera marina) community
2022
Baden, S. (Susanne) | Fredriksen, Stein | Christie, Hartvig | Eriander, Louise | Gustafsson, Camilla | Holmer, Marianne | Olesen, Birgit | Thormar, Jonas | Boström, Christoffer
We conducted a short-term field sampling complemented with time integrating stable isotope analysis to holistically investigate status and ecological interactions in a remote NE Atlantic Zostera marina meadow. We found high nutrient water concentrations, large biomass of fast-growing, ephemeral macroalgae, low abundance, and biodiversity of epifauna and a food web with thornback ray (Raja clavata) as intermediate and cod (Gadus morhua) as top predator. We observed no variation with increasing depth (3.5–11 m) except for decreasing shoot density and biomass of Zostera and macroalgae. Our results indicate that the Finnøya Zostera ecosystem is eutrophicated. During the past three to four decades, nutrients from aquaculture have steadily increased to reach 75% of anthropogenic input while the coastal top predator cod has decreased by 50%. We conclude that bottom-up regulation is a predominant driver of change since top-down regulation is generally weak in low density and exposed Zostera ecosystems such as Finnøya.
显示更多 [+] 显示较少 [-]Microplastic accumulation in a Zostera marina L. bed at Deerness Sound, Orkney, Scotland
2020
Jones, Katherine L. | Hartl, Mark G.J. | Bell, Michael C. | Capper, Angela
Seagrasses have global distribution and are highly productive and economically valuable habitats. They are sensitive and vulnerable to a range of human-induced pressures, including ongoing exposure to marine litter, such as microplastic particles (<5 mm). In this study, a Zostera marina bed in Deerness Sound, Orkney was selected to determine whether microplastics accumulate in seagrass beds and adhere to seagrass blades. Sediment, seagrass blade, biota and seawater samples were collected. 280 microplastic particles (0.04 to 3.95 mm (mean = 0.95 mm ± 0.05 SE)) were observed in 94% of samples collected (n = 111). These were visually categorised into type (fibre, flake, fragment) and colour, and 50 were successfully identified as plastic using ATR-FTIR. Fibres contributed >50% of the total microplastics observed across all samples. This is the first known study on Z. marina to describe microplastic loading within a seagrass bed and to identify microplastic adherence to seagrass blades.
显示更多 [+] 显示较少 [-]Sheaths of Zostera marina L. as ecological indicators of shoot length and the elemental stoichiometry of aboveground tissues
2020
Xu, Shaochun | Wang, Pengmei | Zhou, Yi | Wang, Feng | Zhang, Xiaomei | Gu, Ruiting | Xu, Shuai | Yue, Shidong | Zhang, Yu | Suonan, Zhaxi
Given a large quantity of epiphytes and other material attached on eelgrass leaf blades, we explored the relationship between eelgrass sheaths and different-aged leaf blades (1st, 2nd, 3rd, and 4th leaf blade) on nutrient content and their ratios (C, N, P, C/N, C/P, and N/P) to identify whether eelgrass sheaths could be used to instead of leaf blades in terms of nutrient content. In addition, we explored the relationship between eelgrass sheath length and shoot length. Results showed that there were significant relationships between the sheath and leaf blades in terms of N and P content and their ratios. For length analysis, there was a significant relationship between sheath length and shoot length, and shoot length was approximately four to five times (mean 4.4659) longer than sheath length, such that shoot length can be estimated by sheath length. These significant relationships suggest that eelgrass sheath could be used as a suitable predictor of leaf blade in length and nutrient stoichiometry, thus eelgrass sheath could be used as an indicator for further eelgrass nutrient monitoring and research.
显示更多 [+] 显示较少 [-]Severe shifts of Zostera marina epifauna: Comparative study between 1997 and 2018 on the Swedish Skagerrak coast
2020
Riera, Rodrigo | Vasconcelos, Joana | Baden, S. (Susanne) | Gerhardt, Linda | Sousa, R. (Ricardo) | Infantes, Eduardo
The interaction between bottom-up and top-down processes in coastal ecosystems has been scarcely studied so far. Temporal changes in trophic interactions of Zostera marina along the Swedish west coast are relatively well studied, with the exception of epifaunal communities. Epifauna was used as a model study to explore resource (bottom-up) or predator (top-down) regulated in a vegetated ecosystem. We conducted a 21-year comparative study (1997 and 2018) using epifauna of 19 Zostera marina meadows along the Swedish Skagerrak coast. Large changes were observed in the composition of small (0.2–1 mm) and large (>1 mm) epifauna. In the small-sized epifauna, the nematode Southernia zosterae and harpacticoids showed an increase of 90% and a decrease of 50% of their abundances, respectively. In the large-sized epifauna, the polychaete Platynereis dumerilii and chironomid larvae were absent in 1997 but thrived in 2018 (>2000 ind. m⁻²). Mesoherbivores (Idoteids and gammarids) were locally very abundant in 1997 but disappeared in 2018. An 83% decline of mytilids settling in Zostera marina leaves was observed. Our results showed that epifauna is predominantly top-down regulated. An integrative framework of the study area is outlined to shed light on the causes and consequences of the environmental shifts reported in Zostera meadows from the northern Skagerrak area throughout the last three decades.
显示更多 [+] 显示较少 [-]The influence of plastic pollution and ocean change on detrital decomposition
2020
Litchfield, Sebastian G. | Schulz, Kai G. | Kelaher, Brendan P.
Plastic pollution and ocean change have mostly been assessed separately, missing potential interactions that either enhance or reduce future impacts on ecosystem processes. Here, we used manipulative experiments with outdoor mesocosms to test hypotheses about the interactive effects of plastic pollution, ocean warming and acidification on macrophyte detrital decomposition. These experiments focused on detritus from kelp, Ecklonia radiata, and eelgrass, Zostera muelleri, and included crossed treatments of (i) no, low and high plastic pollution, (ii) current/future ocean temperatures, and (iii) ambient/future ocean partial pressure of carbon dioxide (pCO₂). High levels of plastic pollution significantly reduced the decomposition rate of kelp and eelgrass by approximately 27% and 36% in comparison to controls respectively. Plastic pollution also significantly slowed the nitrogen liberation from seagrass and kelp detritus. Higher seawater temperatures significantly increased the decomposition rate of kelp and eelgrass by 12% and 5% over current conditions, respectively. Higher seawater temperatures were also found to reduce the nitrogen liberation in eelgrass. In contrast, ocean acidification did not significantly influence the rate of macrophyte decomposition or nutrient liberation. Overall, our results show how detrital processes might respond to increasing plastic pollution and ocean temperatures, which has implications for detrital-driven secondary productivity, nutrient dynamics and carbon cycling.
显示更多 [+] 显示较少 [-]Trace elements in Mediterranean seagrasses: Accumulation, tolerance and biomonitoring. A review
2017
Bonanno, Giuseppe | Orlando Bonaca, Martina
This study investigated the state of the art on trace elements in Mediterranean seagrasses, and their close environment (seawater and sediment). The analyzed species were Posidonia oceanica, Cymodocea nodosa, Halophila stipulacea, Zostera marina and Zostera noltei. All these species showed high tolerance to pollution and high capacity of accumulation of trace elements. Seagrasses also showed similar patterns of accumulation: the highest concentrations of As, Hg and Pb were found in the roots, whereas those of Cd, Cr, Cu, Mn, Ni and Zn were found in the leaves. Phytotoxic levels in seagrasses are unknown for most trace elements. The accumulation of trace elements in seagrasses is widely recognized as a risk to the whole food web, but the real magnitude of this risk is still uncertain. Seagrasses are known to act as trace element bioindicators, but this potential is still poorly valued for the creation of biomonitoring networks.
显示更多 [+] 显示较少 [-]Measures for environmental conservation in enclosed coastal seas
2016
Tomita, Akio | Nakura, Yoshio | Ishikawa, Takuya
With putting a focus on the balance among the nutrient salts such as nitrogen and phosphorus, the Ministry of the Environment (MOE) developed the Action Plan for Healthy Material Circulation in Ocean (just called the Healthy Plan). The plan aims to facilitate the healthy and smooth circulation of the nutrients with an integrated management over land and sea as a package in respective sea areas. The Healthy Plan is now in a pilot phase and is to be implemented for some selected model regions.Meanwhile, devastating tsunamis caused by the Great East Japan Earthquake on March 11th, 2011 severely damaged the natural environments in the affected regions. In the affected bays, seaweed beds and spawning grounds disappeared in a blink. MOE has launched on the recovery activities of Zostera (eelgrass) beds, using the concepts and the methods used in the “Sato-umi Creation” activity which is a purposeful environmental recovery project.
显示更多 [+] 显示较少 [-]