细化搜索
结果 1001-1010 的 8,088
Indirect photodegradation of sulfadiazine in the presence of DOM: Effects of DOM components and main seawater constituents 全文
2021
Bai, Ying | Zhou, Yanlei | Che, Xiaowei | Li, Conghe | Cui, Zhengguo | Su, Rongguo | Qu, Keming
The presence of pharmaceuticals and personal care products in coastal waters has caused concern over the past decade. Sulfadiazine (SD) is a very common antibiotic widely used as human and fishery medicine, and dissolved organic matter (DOM) plays a significant role in the indirect photodegradation of SD; however, the influence of DOM compositions on SD indirect photodegradation is poorly understood. The roles of reactive intermediates (RIs) in the indirect photolysis of SD were assessed in this study. The reactive triplet states of DOM (³DOM∗) played a major role, whereas HO· and ¹O₂ played insignificant roles. DOM was divided into four components using excitation-emission matrix spectroscopy combined with parallel factor analysis. The components included three allochthonous humic-like components and one autochthonous humic-like component. The allochthonous humic-like components contributed more to RIs generation and SD indirect photolysis than the autochthonous humic-like component. A significant relationship between the indirect photodegradation of SD and the decay of DOM fluorescent components was found (correlation coefficient, 0.99), and the different indirect photodegradation of SD in various DOM solutions might be ascribed to the different components of DOM. The indirect photolysis rate of SD first increased and then decreased with increasing pH. SD photolysis was enhanced by low salinity but remained stable at high salinity. The increased carbonate concentration inhibited SD photolysis, whereas nitrate showed almost no effect in this study.
显示更多 [+] 显示较少 [-]Contamination and human health risks of polycyclic aromatic hydrocarbons in surface soils from Tianjin coastal new region, China 全文
2021
Shi, Rongguang | Li, Xiaohua | Yang, Yanying | Fan, Ying | Zhao, Zongshan
Polycyclic aromatic hydrocarbons (PAHs) in urban soils are of increasing concern because of their potential toxicity and persistence. However, there is limited information about PAHs in Tianjin coastal new region, although it is an important economic and industrial center in Northern China. Here we determined the concentrations of PAHs in 210 surface soil samples collected from this region according to administrative divisions covering Han’gu district, Tanggu district, and Dagang district, to evaluate their contamination and potential cancer risks. The concentrations of 16 PAHs ranged from 58.2 to 9160 ng g⁻¹, and the highest concentration was found in Han’gu district. According to the incremental lifetime cancer risk (ILCR) model, the soils from Han’gu district and Dagang district posed a moderate carcinogenic risk to residents, and dermal contact was the main exposure pathway. Besides, ILCRs for children through ingestion were comparable to those for adults but apparently higher than adolescents, while ILCRs of dermal contact for adults were higher than children and adolescents. Comparisons between the layout of industrial zones and the distributions of PAHs as well as ILCRs indicate that PAHs accumulating in soils and then incurring risk areas is partly controlled by the economic and industrial structure.
显示更多 [+] 显示较少 [-]Microplastic pollution of worldwide lakes 全文
2021
Dusaucy, Julia | Gateuille, David | Perrette, Yves | Naffrechoux, Emmanuel
Studies on microplastic (MP) pollution in lakes are recent, although the problem of MP particles in the oceans was first discovered in the 1970s. The first study on lakes was published in 2011. Since then, to our knowledge, 98 lakes have been investigated worldwide. In recent years, studies on this topic have increased worldwide, particularly those focusing on urbanised lakes. Most of the plastic waste in the seas and oceans originates from the terrestrial environment and inland waters. Moreover, lakes are potential temporary or long-term MP accumulators, according to the residence time of water. They are also of high interest for biodiversity, ecology, and the economy. Lacustrine ecosystems may suffer the same fate as marine ecosystems, or even worse, owing to their greater exposure. With the significant focus on ocean and sea contamination, contamination of freshwater ecosystems and lakes is a new and rising topic. However, as a new field of research, several methodological issues have been raised. The team diversity worldwide has led to contrasting sampling techniques and materials, sample treatments, analyses, and presentation of results. Consequently, it is necessary to determine several consensuses between scientific teams in order to work together with accuracy, produce comparable results, speed up knowledge sharing and reduce the reproducibility crisis. This review focuses on (1) MP contamination in 98 worldwide lakes. We identify (2) the theoretical sources of MPs and provide (3) an estimate of MP pollution in different compartments of the lakes based on current state-of-the-art methods. In addition, we also report (4) the predominant MP size classes and polymer types. Finally, we suggest (5) several recommendations to build a consensus between all the working teams to facilitate decision-making by public authorities.
显示更多 [+] 显示较少 [-]Biological selenite removal and recovery of selenium nanoparticles by haloalkaliphilic bacteria isolated from the Nakdong River 全文
2021
Won, Sangmin | Ha, Myung-Gyu | Nguyen, Dinh Duc | Kang, Ho Young
Microbial selenite reduction has increasingly attracted attention from the scientific community because it allows the separation of toxic Se from waste sources with the concurrent recovery of Se nanoparticles, a multifunctional material in nanotechnology industries. In this study, four selenite-reducing bacteria, isolated from a river water sample, were found to reduce selenite by > 85% within 3 d of incubation, at ambient temperature. Among them, strain NDSe-7, belonging to genus Lysinibacillus, can reduce selenite and produce Se nanospheres in alkaline conditions, up to pH 10.0, and in salinity of up to 7.0%. This strain can reduce 80 mg/L of selenite to elemental Se within 24 h at pH 6.0–8.0, at a temperature of 30–40 °C, and salinity of 0.1–3.5%. Strain NDSe-7 exhibited potential for use in Se removal and recovery from industrial saline wastewater with high alkalinity. This study indicates that extremophilic microorganisms for environmental remediation can be found in a conventional environment.
显示更多 [+] 显示较少 [-]Maternal urinary levels of glyphosate during pregnancy and anogenital distance in newborns in a US multicenter pregnancy cohort 全文
2021
Lesseur, Corina | Pirrotte, Patrick | Pathak, Khyatiben V. | Manservisi, Fabiana | Mandrioli, Daniele | Belpoggi, Fiorella | Panzacchi, Simona | Li, Qian | Barrett, Emily S. | Nguyen, Ruby H.N. | Sathyanarayana, Sheela | Swan, Shanna H. | Chen, Jia
Human exposure to glyphosate has become ubiquitous because of its increasing agricultural use. Recent studies suggest endocrine disrupting effects of glyphosate. Specifically, in our work in rodents, low-dose early-life exposure to Roundup® (glyphosate-based herbicide) lengthened anogenital distance (AGD) in male and female offspring. AGD is a marker of the prenatal hormone milieu in rodents and humans. The relationship between glyphosate exposure and AGD has not been studied in humans. We conducted a pilot study in 94 mother-infant pairs (45 female and 49 male) from The Infant Development and the Environment Study (TIDES). For each infant, two AGD measurements were collected after birth; the anopenile (AGD-AP) and anoscrotal (AGD-AS) distances for males, and anoclitoral (AGD-AC) and anofourchette distances (AGD-AF) for females. We measured levels of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in 2nd trimester maternal urine samples using ultra-high-performance liquid chromatography-tandem mass spectrometry. We assessed the relationship between exposure and AGD using sex-stratified multivariable linear regression models. Glyphosate and AMPA were detected in 95% and 93% of the samples (median 0.22 ng/mL and 0.14 ng/mL, respectively). Their concentrations were moderately correlated (r = 0.55, p = 5.7 × 10⁻⁹). In female infants, high maternal urinary glyphosate (above the median) was associated with longer AGD-AC (β = 1.48, 95%CI (−0.01, 3.0), p = 0.05), but this was not significant after covariate adjustment. Increased AMPA was associated with longer AGD-AF (β = 1.96, 95%CI (0.44, 3.5), p = 0.01) after adjusting for infant size and age at AGD exam. No associations were detected in male offspring. These preliminary findings partially reproduce our previous results in rodents and suggest that glyphosate is a sex-specific endocrine disruptor with androgenic effects in humans. Given the increasing glyphosate exposures in the US population, larger studies should evaluate potential developmental effects on endocrine and reproductive systems.
显示更多 [+] 显示较少 [-]Human impacted shallow lakes in the Pampean plain are ideal hosts for cyanobacterial harmful blooms 全文
2021
O'Farrell, Inés | Sánchez, María Laura | Schiaffino, María Romina | Izaguirre, Irina | Huber, Paula | Lagomarsino, Leonardo | Yema, Lilen
The ecological status of Pampean shallow lakes is evidenced by Cyanobacteria Harmful Blooms impairing these nutrient enriched, turbid and polymictic water bodies spread along the Central Plains of Argentina. Under the premise that shallow lakes are sentinels of global climate and eutrophication, a 3-year research in ten lakes located across a climatic gradient explored which factors drove the dynamics of cyanobacterial assemblages frequently driving to bloom prevalence. Contrarily to what is expected, the effect of seasonal temperature on cyanobacteria was subordinated to both the light environment of the water column, which was on turn highly affected by water level conditions, and to nutrient concentrations. Monthly samplings evidenced that cyanobacterial assemblages presented a broad-scale temporal dynamics mostly reflecting inter-annual growth patterns driven by water level fluctuations. Both species composition and biovolume gradually changed across a gradient of resources and conditions and hence, the scenario in each individual lake was unique with patterns at different temporal and spatial scales. More than 35 filamentous and colonial morphospecies constituted the assemblages of Pampean lakes: nostocaleans and chroococcaleans were inversely correlated in the prevailing interannual 3-cycled patterns.
显示更多 [+] 显示较少 [-]Declines in heart rate variability associated with short-term PM2.5 exposure were modified by blood pressure control and treatment: A multi-city panel study in China 全文
2021
Xing, Xiaolong | Liu, Fangchao | Yang, Xueli | Liu, Qiong | Wang, Xinyan | Lin, Zhennan | Huang, Keyong | Cao, Jie | Li, Jianxin | Fan, Meng | Chen, Xiaotian | Zhang, Cuizhen | Chen, Shufeng | Lu, Xiangfeng | Gu, Dongfeng | Huang, Jianfeng
Exposure to fine particulate matter (PM₂.₅) was associated with altered heart rate variability (HRV). However, whether blood pressure (BP) control and angiotensin II receptor blocker (ARB) treatment modifies the associations was seldom addressed. Therefore, we conducted a 3-phase panel study among 282 hypertensive subjects aged 35–74 years in four cities of China to address this issue. Real-time personal PM₂.₅ sampling and 24-h ambulatory electrocardiogram monitoring were performed repeatedly in 3 different seasons. Linear mixed-effects models were fitted overall and by control status of BP and ARB treatment to assess the associations between short-term PM₂.₅ exposure and HRV. The average hourly PM₂.₅ concentrations (Mean ± SD) ranged from 19.3 ± 18.2 μg/m³ to 99.4 ± 76.9 μg/m³ across study phases and cities. Generally, PM₂.₅ exposure was associated with decreased hourly and 24-h HRV. However, these adverse impacts were attenuated among patients with controlled BP (<140/90 mmHg). For each 10 μg/m³ increment in moving average of previous 2 days' (MA2d) PM₂.₅ exposure, 24-h SDNN (standard deviation of NN intervals) and rMSSD (root mean square of successive RR interval differences) decreased by 0.89% (95% CI: 0.19%–1.59%) and 2.98% (95% CI: 1.04%–4.89%) among patients with uncontrolled BP (≥140/90 mmHg), whereas no obvious declines were observed among those with controlled BP (Pdᵢffₑᵣₑₙcₑ = 0.007 and 0.022, respectively). Furthermore, ARB treatment alleviated or eliminated PM₂.₅-associated declines in hourly and 24-h HRV among those with uncontrolled BP. For instance, 24-h SDNN decreased by 1.31% (95% CI: 0.54%–2.07%) with a 10 μg/m³ increment in lag 2 days’ PM₂.₅ exposure in ARB nonusers, whereas no obvious changes were observed in ARB users (Pdᵢffₑᵣₑₙcₑ = 0.021). In conclusion, although PM₂.₅ exposure would decrease HRV, better BP control and ARB treatment could attenuate these adverse impacts, which provides supporting evidence for alleviating autonomic dysfunction of hypertension patients living in areas with high-level PM₂.₅.
显示更多 [+] 显示较少 [-]Highly effective remediation of high-arsenic wastewater using red mud through formation of AlAsO4@silicate precipitate 全文
2021
Lu, Zhixu | Qi, Xianjin | Zhu, Xing | Li, Xuezhu | Li, Kongzhai | Wang, Hua
High-arsenic wastewater derived from the metallurgical industry of nonferrous minerals is one of the most dangerous arsenic (As) sources that usually follow the emission of massive hazardous arsenic-bearing wastes. Considering the properties of red mud (RM), we propose an alternative and environmentally friendly method for the efficient remediation of high-arsenic wastewater using RM through formation of AlAsO₄@silicate precipitate, aiming at ''zero-emission of hazardous solid waste''. The results show nearly 100% of arsenic could be stepwisely removed from high-arsenic wastewater and reduce the arsenic concentration from 6100 mg/L to 40 μg/L using RM at room temperature. The highest arsenic removal capacity of RM reaches 101.5 mg/g at a RM-to-wastewater ratio of 40 g/L due to the superior arsenic adsorption and the co-precipitation of arsenate and Al³⁺ to form insoluble aluminum arsenate. The silicate shell of arsenic-loaded RM created at an alkaline condition acts as an arsenic stabilizer, resulting in a leached arsenic concentration of 1.2 mg/L in TCLP tests. RM acts as a highly effective arsenic remover and stabilizer for the disposal of high-arsenic wastewater. It shows great potential for the remediation of wastewater containing heavy metals with varying concentrations to produce clean water available for industrial purpose.
显示更多 [+] 显示较少 [-]Effect of salinity and algae biomass on mercury cycling genes and bacterial communities in sediments under mercury contamination: Implications of the mercury cycle in arid regions 全文
2021
Song, Wenjuan | Xiong, Heigang | Qi, Ran | Wang, Shuzhi | Yang, Yuyi
Lakes in arid regions are experiencing mercury pollution via air deposition and surface runoff, posing a threat to ecosystem safety and human health. Furthermore, salinity and organic matter input could influence the mercury cycle and composition of bacterial communities in the sediment. In this study, the effects of salinity and algae biomass as an important organic matter on the genes (merA and hgcA) involved in the mercury cycle under mercury contamination were investigated. Archaeal merA and hgcA were not detected in sediments of lake microcosms, indicating that bacteria rather than archaea played a crucial role in mercury reduction and methylation. The high content of mercury (300 ng g⁻¹) could reduce the abundance of both merA and hgcA. The effects of salinity and algae biomass on mercury cycling genes depended on the gene type and dose. A higher input of algae biomass (250 mg L⁻¹) led to an increase of merA abundance, but a decrease of hgcA abundance. All high inputs of mercury, salinity, and algae biomass decreased the richness and diversity of bacterial communities in sediment. Further analysis indicated that higher mercury (300 ng g⁻¹) led to an increased relative abundance of mercury methylators, such as Ruminococcaceae, Bacteroidaceae, and Veillonellaceae. Under saline conditions (10 and 30 g L⁻¹), the richness of specific bacteria associated with mercury reduction (Halomonadaceae) and methylation (Syntrophomonadaceae) increased compared to the control. The input of algae biomass led to an increase in the specific bacterial communities associated with the mercury cycle and the richness of bacteria involved in the decomposition of organic matter. These results provide insight into mercury cycle-related genes and bacterial communities in the sediments of lakes in arid regions.
显示更多 [+] 显示较少 [-]Cadmium exposure alters expression of protective enzymes and protein processing genes in venom glands of the wolf spider Pardosa pseudoannulata 全文
2021
Lv, Bo | Yang, Huilin | Peng, Yuan-de | Wang, Juan | Zeng, Zhi | Li, Na | Tang, Yun-e | Wang, Zhi | Song, Qi-sheng
Cadmium (Cd) pollution is currently the most serious type of heavy metal pollution throughout the world. Previous studies have shown that Cd elevates the mortality of paddy field spiders, but the lethal mechanism remains to be explored profoundly. In the present study, we measured the activities of protective enzymes (acetylcholinesterase, glutathione peroxidase, phenol oxidase) and a heavy metal chelating protein (metallothionein) in the pond wolf spider Pardosa pseudoannulata after Cd exposure. The results indicated that Cd initially increased the enzyme activities and protein concentration of the spider after 10- and 20-day exposure before inhibiting them at 30-day exposure. Further analysis showed that the enzyme activities in the cephalothorax were inhibited to some extent. Since the cephalothorax region contains important venom glands, we performed transcriptome sequencing (RNA-seq) analysis of the venom glands collected from the spiders after long-term Cd exposure. RNA-seq yielded a total of 2826 differentially expressed genes (DEGs), and most of the DEGs were annotated into the process of protein synthesis, processing and degradation. Furthermore, a mass of genes involved in protein recognition and endoplasmic reticulum (ER) -associated protein degradation were down-regulated. The reduction of protease activities supports the view that protein synthesis and degradation in organelles and cytoplasm were dramatically inhibited. Collectively, our outcomes illustrate that Cd poses adverse effects on the expression of protective enzymes and protein, which potentially down-regulates the immune function in the venom glands of the spiders via the alteration of protein processing and degradation in the ER.
显示更多 [+] 显示较少 [-]