细化搜索
结果 1011-1020 的 1,540
Enhanced Phenol and Chlorinated Phenols Removal by Combining Ozonation and Biodegradation
2012
García-Peña, Elvia Inés | Zarate-Segura, Paola | Guerra-Blanco, Pamela | Poznyak, Tatyana | Chairez, Isaac
Water treatment for wastewater containing phenols and their chlorinated variations has attracted important research efforts. Phenol’s high toxicity makes them a good model to test possible water treatment based on biological and/or chemical methods. High concentrations of phenols may be treated by pure biological schemes. However, chlorinated phenols are very toxic for many microorganisms. Therefore, mixed treatment trains can be proposed to solve the treatment of this class of organics. In this study, the ozonation was used as pretreatment to decompose chlorinated phenols. Besides, this study describes how the microbial consortiums were adapted to handle ozonation by-products. The biodegradation of different phenol concentrations from 50 to 1,500 mg/L was evaluated using preadapted microbial consortia in batch and in a trickling packed-bed reactor (TPBR). Under batch conditions, phenol was efficiently removed up to 500 mg/L. For every phenol concentration evaluated, higher degradation rates were obtained in TPBR. The chlorophenols were found to be poorly degraded by the pure biological treatment, 4-CPh was not degraded during the biological process and 2,4-DCPh was only 40 % degraded after 250 h of culture. By combining the chemical (as pretreatment) and the biological processes, 85 % of 4-CPh was removed, while the degradation of the 2,4-DCPh was enhanced from 40 to 87 %. The predominant bacteria found in the preadapted cultures were Xanthomonas sp., Ancylobacter sp., and Rhodopseudomonas. Total treatment period was reduced from several weeks to some days. This information reflects the benefits offered by the mixed water treatment train proposed in this paper.
显示更多 [+] 显示较少 [-]Influence of Vermicompost on Dry Matter Yield and Uptake of Ni and Cd by Chamomile (Matricaria chamomilla) in Ni- and Cd-Polluted Soil
2012
Chand, Sukhmal | Pandey, Ankit | Patra, D. D.
An experiment was conducted under simulated condition to study the influence of vermicompost on growth, yield and heavy metal accumulation by chamomile (Matricaria chamomilla), an important essential oil bearing crop grown under simulated condition. Nickel and Cadmium applied at 20 mg kg−1 soil significantly enhanced the dry matter yield of the crop as compared to the control (no heavy metal). The results also revealed that addition of vermicompost (at 2.5 g kg−1 soil) enhanced the heavy metal accumulation by chamomile in metal-treated soil. Although a sizeable amount of metals were being translocated to flowers, the essential oil extracted by hydrodistillation of flowers did not contain any heavy metal. Similarly, chemical constituents of the oil of chamomile were within the range of those obtained from chamomile grown under normal soil condition.
显示更多 [+] 显示较少 [-]How Effective is Reduced Tillage–Cover Crop Management in Reducing N₂O Fluxes from Arable Crop Soils?
2012
Abdalla, M. | Rueangritsarakul, K. | Jones, M. | Osborne, B. | Helmy, M. | Roṭh, B. | Burke, J. | Nolan, P. | Smith, P. | Williams, M.
Field management is expected to influence nitrous oxide (N₂O) production from arable cropping systems through effects on soil physics and biology. Measurements of N₂O flux were carried out on a weekly basis from April 2008 to August 2009 for a spring sown barley crop at Oak Park Research Centre, Carlow, Ireland. The soil was a free draining sandy loam typical of the majority of cereal growing land in Ireland. The aims of this study were to investigate the suitability of combining reduced tillage and a mustard cover crop (RT–CC) to mitigate nitrous oxide emissions from arable soils and to validate the DeNitrification–DeComposition (DNDC) model version (v. 9.2) for estimating N₂O emissions. In addition, the model was used to simulate N₂O emissions for two sets of future climate scenarios (period 2021–2060). Field results showed that although the daily emissions were significantly higher for RT–CC on two occasions (p < 0.05), no significant effect (p > 0.05) on the cumulative N₂O flux, compared with the CT treatment, was found. DNDC was validated using N₂O data collected from this study in combination with previously collected data and shown to be suitable for estimating N₂O emissions (r ² = 0.70), water-filled pore space (WFPS) (r ² = 0.58) and soil temperature (r ² = 0.87) from this field. The relative deviations of the simulated to the measured N₂O values with the 140 kg N ha⁻¹ fertiliser application rate were −36 % for RT–CC and −19 % for CT. Root mean square error values were 0.014 and 0.007 kg N₂O–N ha⁻¹ day⁻¹, respectively, indicating a reasonable fit. Future cumulative N₂O fluxes and total denitrification were predicted to increase under the RT–CC management for all future climate projections, whilst predictions were inconsistent under the CT. Our study suggests that the use of RT–CC as an alternative farm management system for spring barley, if the sole objective is to reduce N₂O emissions, may not be successful.
显示更多 [+] 显示较少 [-]Perchlorate Depositional History as Recorded in North American Ice Cores from the Eclipse Icefield, Canada, and the Upper Fremont Glacier, USA
2012
Rao, Balaji Anandha | Wake, Cameron P. | Anderson, Todd | Jackson, William Andrew
Temporal depositional rates are important in order to understand the production and occurrence of perchlorate (ClO 4 − ) as limited information exists regarding the impact of anthropogenic production or atmospheric pollution on ClO 4 − deposition. Perchlorate concentrations in discrete ice core samples from the Eclipse Icefield (Yukon Territory, Canada) and Upper Fremont Glacier (Wyoming, USA) were analyzed using ion chromatography tandem mass spectrometry to evaluate temporal changes in the deposition of ClO4 − in North America. The ice core samples cover a time period from 1726 to 1993 and 1970 to 2002 for the Upper Fremont Glacier (UFG) and Eclipse ice cores, respectively. The average ClO4 − concentration in the Eclipse ice core for the time period from 1970 to 1973 was 0.6 ± 0.3 ng L−1, with higher values of 2.3 ± 1.7 and 2.2 ± 2.0 ng L−1 for the periods 1982–1986 and 1999–2002, respectively. All pre-1980 ice core samples from the UFG had ClO4 − concentrations <0.2 ng L−1, and the post-1980 samples ranged from <0.2 ng L−1 to a maximum of 2.6 ng L−1 for the year 1992. A significant positive correlation (R = 0.75, N = 15, p < 0.001) of ClO 4 − with SO 4 2− was found for the annual UFG ice core layers and of ClO4 − with SO 4 2− and NO 3 − in sub-annual Eclipse ice samples (R > 0.3, N = 121, p < 0.002). The estimated yearly ClO 4 − depositional flux for the Eclipse ice core ranged from 0.6 (1970) to 4.7 μg m−2 year−1 (1982) and the UFG from <0.1 (pre-1980) to 1.4 μg m−2 year−1 (1992). There was no consistent seasonal variation in the ClO 4 − depositional flux for the Eclipse ice core, in contrast to a previous study on the Arctic region. The presence of ClO 4 − in these ice cores might correspond to an intermittent source such as volcanic eruptions and/or any anthropogenic forcing that may directly or indirectly aid in atmospheric ClO 4 − formation.
显示更多 [+] 显示较少 [-]Phytoremediation of Mixed Soil Contaminants
2012
Ramamurthy, Armuthur S. | Memarian, Ramin
Tests were conducted to study the influence of non-ionic surfactants Triton X-100 and Tween 80 on the removal of mixed contaminants from a sandy soil using phytoremediation. Cd(II) and Pb(II) were used to form the inorganic contaminant, while used engine oil was selected to form the organic contaminant. The Indian mustard (Brassica juncea) plant was the plant chosen for phytoremediation of the sandy soil that contained the mixed contaminant. Thirty days after the plants were grown in the greenhouse, surfactants were applied to test pots in which the soil had been spiked with 50 mg kg−1 of CdCl2, 500 mg kg−1 of PbCl2 and 500 mg kg−1 of used engine oil. Two control tests were conducted in this study. Planted and unplanted control tests were conducted using soil without surfactants. Following these tests, the tests were completed using the plants and surfactants at different concentrations. Test results showed that Triton X-100 and Tween 80 at concentrations higher than their critical micellar concentration enhanced Cd(II) and Pb(II) accumulation in the plant roots. Further, test data showed that translocation of contaminants to plant shoots occurred for Cd(II) but not for Pb(II). At the same concentrations, Tween 80 was more effective than Triton X-100 in facilitating rhizodegradation of used engine oil. This study demonstrates that simultaneous phytoremediation of Pb(II), Cd(II) and oil can be enhanced by using non-ionic surfactant Tween 80. Leaching test results indicated that the enhanced phytoremediation could remove the mixed contaminants safely from the point of view of limiting groundwater contamination.
显示更多 [+] 显示较少 [-]Arsenic Removal from Water by Iron-Modified Bamboo Charcoal
2012
Liu, Xi | Ao, Hongyi | Xiong, Xiong | Xiao, Jinguang | Liu, Jiantong
The effectiveness of a novel and low-cost adsorbent, iron-modified bamboo charcoal (BC-Fe), for arsenic removal from aqueous systems was evaluated in this study. The BC-Fe was synthesized by loading iron onto bamboo charcoal via soaking in a ferric salt solution. The BC-Fe possessed a porous structure with a surface area of 277.895 m2/g. The adsorption characteristics of arsenic onto BC-Fe were further investigated at various pHs, contact times, arsenic concentrations, and adsorbent doses in batch tests. The corresponding optimum equilibrium pH ranges for As(III) and As(V) removal were 4–5 and 3–4, respectively. The equilibrium times for As(III) and As(V) adsorption were 30 and 35.5 h, respectively. The arsenic removal was strongly dependent on the initial adsorbate concentration and adsorbent dosage. The maximum arsenic removal capacities of BC-Fe under the experimental conditions were 7.237 and 19.771 mg/g for As(III) and As(V), respectively. The pseudo-second-order kinetic model and Freundlich isotherm explained the kinetic and equilibrium of both the As(III) and As(V) adsorbent processes, respectively. Based on these results, the BC-Fe developed in this study is a promising material for the treatment of arsenic-contaminated water.
显示更多 [+] 显示较少 [-]Sorption Behavior of Brilliant Blue FCF by a Fe-Zeolitic Tuff
2012
Pinedo-Hernández, S. | Díaz-Nava, C. | Solache-Ríos, M.
The adsorption of Brilliant Blue FCF from aqueous solution was evaluated using a Fe-zeolitic tuff. The adsorbent was characterized by scanning electron microscopy, IR spectroscopy and X-ray diffraction. Sorption kinetic, isotherms, dose and pH effects were determined and the adsorption behavior was analyzed. Kinetic pseudo-first order and linear isotherm models were successfully applied to the experimental results, indicating that the sorption mechanism is physisorption. Experiments in columns were performed and breakpoint was found in 100Â min using a concentration of 5Â mg/l.
显示更多 [+] 显示较少 [-]Phosphorus Removal from Eutrophic Waters with an Aluminium Hybrid Nanocomposite
2012
Oliveira, M. | Machado, A. V. | Nogueira, R.
An excess of phosphorus (P) is the most common cause of eutrophication of freshwater bodies. Thus, it is imperative to reduce the concentration of P to prevent harmful algal blooms. Moreover, recovery of P has been gaining importance because its natural source will be exhausted in the near future. Therefore, the present work investigated the removal and recovery of phosphate from water using a newly developed hybrid nanocomposite containing aluminium nanoparticles (HPN). The HPN-Pr removes 0.80 ± 0.01 mg P/g in a pH interval between 2.0 and 6.5. The adsorption mechanism was described by a Freundlich adsorption model. The material presented good selectivity for phosphate and can be regenerated using an HCl dilute solution. The factors that contribute most to the attractiveness of HPN-Pr as a phosphate sorbent are its moderate removal capacity, feasible production at industrial scale, reuse after regeneration and recovery of phosphate.
显示更多 [+] 显示较少 [-]Sorption and Desorption of Red 5 and Yellow 6 by a Fe-Zeolitic Tuff
2012
Salinas-Hernández, C. | Díaz-Nava, M. C. | Solache-Ríos, M.
The capacity of an iron-modified zeolite was evaluated for the removal of two dyes (red 5 and yellow 6) use in foodstuff; the regeneration of the dye-saturated materials was also considered. The zeolitic material (clynoptilolite type) was treated with sodium chloride (Na-Ze) and then with ferric chloride (Fe-Ze). The sorption kinetics and isotherms were evaluated, considering the effect of pH on the sorption processes. Sorption–regeneration cycles using iron-modified zeolitic material were performed. The sorption kinetics showed that the sodium-modified zeolitic material removed neither red 5 nor yellow 6 dyes, while the iron-modified zeolitic material removed both dyes; the equilibrium time was reached in 48 h for yellow 6, and it was almost reached in the same time for red 5, the removal percentage for red 5 was 89.4 % and for yellow 6 was 96.7 %. The experimental data showed best adjustment to the pseudo-first-order model (Lagergren), which is based on a superficial reaction. The sorption capacities obtained by the sorption isotherms were 1.6 and 1.7 mg/g for red 5 and yellow 6, respectively. The experimental data were best adjusted to the Langmuir–Freundlich model which indicates that the sorption takes place on a heterogeneous material. It was also observed that the sorption capacities increase as the pH decreases. The results on the desorption processes showed that the best regenerator agent was Fenton’s reagent; the capacities increased in each sorption–regeneration cycle using this reagent; for the red 5, the sorption percentage was 73.6 % in the first cycle and 96.3 % in the third cycle and for yellow 6, the removal percentage was 66.7 % in the first cycle and 80.5 % in the second.
显示更多 [+] 显示较少 [-]Comparison of the Performance of Membrane and Conventional Sequencing Batch Reactors Degrading 4-Chlorophenol
2012
Moreno-Andrade, Iván | Buitrón, G. (Germán)
The biomass characteristics, the process performance, and the microbial community for a sequencing batch reactor (SBR) and a submerged membrane SBR (MSBR) were evaluated. A synthetic wastewater containing only 4-chlorophenol (4CP) was used as the sole source of carbon and energy. Degradation efficiencies of 4CP were higher than 99% for both reactors, and no significant differences on the 4CP degradation rates were observed for the SBR (116.9 ± 0.9 mg 4CP g VSS−1 h−1) as well as for the MSBR (117.3 ± 0.5 mg 4CP g VSS−1 h−1). Despite the similar results obtained for the physicochemical parameters, it was found that the biomass characteristics were different considering the sludge volumetric index, settling velocity, protein content in the mixer liquor, and total suspended solids in the effluent. The settling velocity was three times higher in the SBR than in the MSBR; however, a better quality, considering suspended solids, was observed for the MSBR. The protein concentration in the mixed liquor was higher in the MSBR than in the SBR, generating foaming problems in the MSBR. A similarity analysis was made with the Ochiai–Barkman index. Even though the reactors were inoculated with the same biomass, significant differences in the composition and populations dynamics were observed.
显示更多 [+] 显示较少 [-]