细化搜索
结果 1011-1020 的 5,143
Responses of soil organic carbon turnover to nitrogen deposition are associated with nitrogen input rates: Derived from soil 14C evidences
2018
Tan, Qiqi | Wang, Guoan | Liu, Xuejun | Hao, Tianxiang | Tan, Wenbing
Elevated atmospheric nitrogen (N) deposition has exerted profound influences on ecosystems. Understanding the effects of N deposition on the dynamics of soil organic carbon (SOC) is important in the studies of global carbon cycle. Although many studies have examined the effects of N deposition on SOC turnover using N addition experiments, the effects were reported to be different across studies. Thus, we lack a predictive understanding of how SOC turnover respond to atmospheric N deposition. The inconsistent results could be associated with ecosystem types and N addition rates. This study mainly wants to confirm the argument that the response of SOC turnover to N deposition is related with N input rates. We conducted a field experiment with multiple N addition levels (0, 3, 6, 12, and 24 g N m−2·yr−1) in Inner Mongolia Grassland, China. To better reveal the responses of SOC turnover to N enrichment, this study measured the soil 14C contents, because it can indicate SOC turnover directly. Compared with the control treatment (0 g N m−2·yr−1), N addition inhibits SOC turnover at the addition rate of 3 g N m−2·yr−1, whereas SOC turnover is not affected when N addition rate was 6, 12, and 24 g N m−2·yr−1. Our results suggest that N input rates affect the responses of SOC turnover to N enrichment. Thus, this study can confirm the argument mentioned above. Based on this study, it should be considered in the climate prediction model that varied atmospheric N deposition levels across regions may have different impacts on local SOC turnover. In addition, we also carried out a soil incubation to compare between the results obtained in incubation and that in 14C measurements. Two results are found to be inconsistent with each other. This indicates that soil respiration from incubation experiments could not comprehensively assess the effects of N deposition on SOC turnover.
显示更多 [+] 显示较少 [-]Characteristics and compound-specific carbon isotope compositions of sedimentary lipids in high arsenic aquifers in the Hetao basin, Inner Mongolia
2018
Mao, Ruoyu | Guo, Huaming | Xiu, Wei | Yang, Yuance | Huang, Xianyu | Zhou, Yinzhu | Li, Xiaomeng | Jin, Jianyi
Organic matter, as an electron donor, plays a vital role in As mobilization mediated by microorganisms during reductive dissolution of Fe/Mn oxides in shallow aquifers. However, the specific types and sources of organic matter involved in biogeochemical processes accelerating As mobilization are still controversial. Both sediment and groundwater samples were collected at different depths from aquifers of the Hetao Basin, a typical inland basin hosting high As groundwater. Sedimentary lipids and their compound-specific carbon isotope ratios were analyzed to evaluate characteristics and sources of organic matter. Results show that sedimentary As were well correlated with Fe and Mn oxides, suggesting that As exist as Fe/Mn oxide bound forms. Groundwater As far exceeded the drinking water guide value of 10 μg/L. Moreover, As concentrations in shallow groundwater were relatively higher. Lipids in clay were mainly originated from terrestrial higher plants, while that in fine sand samples were derived from terrestrial higher plants, microorganism and petroleum. Shallow fine sand samples were also characterized by evident in-situ biodegradation. Compound-specific carbon isotope compositions of sedimentary lipids showed that short-chain n-alkanes and n-alkanoic acids had more positive δ13C values compared to long-chain compounds, especially in shallow fine sand samples. δ13CTOC were also low in shallow fine sand samples. These results jointly indicate that these lipids in shallow fine sand samples acted as carbon source for indigenous microorganism and the short-chain components were particularly more vulnerable to biodegradation, which may contribute to high As concentrations in shallow groundwater. The new findings provide the first evidence that short chain length n-alkyl compounds afforded a source of potential electron donors for microbially mediated As mobilization process in the shallow aquifers.
显示更多 [+] 显示较少 [-]De- icing salt contamination reduces urban tree performance in structural soil cells
2018
Ordóñez Barona, Camilo | Sabetski, Vadim | Millward, Andrew A. | Steenberg, James
Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace.
显示更多 [+] 显示较少 [-]Determination of endocrine-disrupting potencies of agricultural soils in China via a battery of steroid receptor bioassays
2018
Zhang, Jianyun | Liu, Rui | Niu, Lili | Zhu, Siyu | Zhang, Quan | Zhao, Meirong | Liu, Weiping | Liu, Jing
Pollution of agricultural soils by pesticides, such as organochlorine pesticides (OCPs), can be a significant issue since high detection rates of these compounds were reported in our previous studies. However, more uncertain kinds, quantities and density of pollutants remained in soil samples were unidentified. In this study, the total hormonal activities of complex mixtures of both known and unknown contaminants in agricultural soils in mainland China were measured by applying highly sensitive reporter gene assays for detecting agonists/antagonists for estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). High detection rates of estrogenic activities and anti-progestogenic activities were observed among the 123 soil samples, reaching 79% and 73%, respectively. More than half of the soil samples showed obvious antagonistic effects against AR and GR. Approximately a third of tested samples exhibited androgenic, progestogenic and glucocorticoidic effects. A total of 72% and 78% soil extracts had mineralocorticoid-like and anti-mineralocorticoid activities, respectively. Significant positive correlations were observed between estrogenic activity and the concentrations of Σdichlorodiphenyltrichloroethanes (DDTs), Σendosulfans, Σchlordanes, heptachlor and Σdrins, respectively, but not other receptors. As a rapid and convenient pre-caution method, determination of endocrine-disrupting potencies of contaminated soils via bioassay could help to identify and define sites that required further attention for ecological risk assessments.
显示更多 [+] 显示较少 [-]Chronic exposure to microcystin-leucine-arginine promoted proliferation of prostate epithelial cells resulting in benign prostatic hyperplasia
2018
Pan, Chun | Chen, Yabing | Xu, Tianchi | Wang, Jing | Li, Dongmei | Han, Xiaodong
Microcystin-leucine-arginine (MC-LR), as a most common and deleterious variant among all structural analogues of Microcystins (MCs), can cause male reproductive dysfunction. However, its toxic effects on prostate in adult mice have not been invested in detail. In this study, we observed that MC-LR could enter prostate tissues and induce focal hyperplasia and prostate inflammation. Moreover, increased levels of prostate specific antigen (PSA) and prostate acid phosphatase (PAP) in serum of mice following chronic exposure to MC-LR were detected. We also examined increased expression of forkhead box protein M1 (FOXM1) and PSA in human prostate epithelial cells (RWPE-1) treated with MC-LR at low levels, and FOXM1 could regulate PSA expression. Furthermore, MC-LR also induced expression of CyclinD1 via FOXM1/Wnt/β-catenin signaling pathways in RWPE-1 cells, promoting proliferation of prostate epithelial cells, resulting in prostatic hyperplasia in vivo. As a foreign substance, MC-LR also induced immune reaction in RWPE-1 cells mediated by NF-κB pathway, promoting production of pro-inflammatory cytokines and chemokines. Collectively, these findings demonstrated that MC-LR may induce prostatic hyperplasia and prostatitis in mice following chronic low-dose exposure to MC-LR. This work may provide new perspectives in developing new diagnosis and treatment strategies for MC-LR-induced prostatic toxicity.
显示更多 [+] 显示较少 [-]Bioaugmentation of thiabendazole-contaminated soils from a wastewater disposal site: Factors driving the efficacy of this strategy and the diversity of the indigenous soil bacterial community
2018
Papadopoulou, Evangelia S. | Genitsaris, Savvas | Omirou, Michalis | Perruchon, Chiara | Stamatopoulou, Anastasia | Ioannides, Ioannis | Karpouzas, Dimitrios G.
The application of the fungicide thiabendazole (TBZ) in fruit packaging plants (FPP) results in the production of effluents which are often disposed in adjacent field sites. These require remediation to prevent further environmental dispersal of TBZ. We assessed the bioaugmentation potential of a newly isolated TBZ-degrading bacterial consortium in a naturally contaminated soil (NCS) exhibiting a natural gradient of TBZ levels (12000, 400, 250 and 12 mg kg⁻¹). The effect of aging on bioaugmentation efficacy was comparatively tested in a soil with similar physicochemical properties and soil microbiota, which was artificially, contaminated with the same TBZ levels (ACS). The impact of bioaugmentation and TBZ on the bacterial diversity in the NCS was explored via amplicon sequencing. Bioaugmentation effectively removed TBZ from both soils at levels up to 400 mg kg⁻¹ but failed at the highest contamination level (12000 mg kg⁻¹). Dissipation of TBZ in bioaugmented samples showed a concentration-dependent pattern, while aging of TBZ had a slight effect on bioaugmentation efficiency. Bioaugmentation had no impact on the soil bacterial diversity, in contrast to TBZ contamination. Soils from the hotspots of TBZ contamination (12000 mg kg⁻¹) showed a drastically lower α-diversity driven by the dominance of β- and γ-proteobacteria at the expense of all other bacterial phyla, especially Actinobacteria. Overall, bioaugmentation with specialized microbial inocula could be an effective solution for the recovery of disposal sites contaminated with persistent chemicals like TBZ.
显示更多 [+] 显示较少 [-]Microplastic pollution in the surface waters of Italian Subalpine Lakes
2018
Sighicelli, Maria | Pietrelli, Loris | Lecce, Francesca | Iannilli, Valentina | Falconieri, Mauro | Coscia, Lucia | Di Vito, Stefania | Nuglio, Simone | Zampetti, Giorgio
Plastic debris incidence in marine environment was already highlighted in the early 1970s. Over the last decade, microplastic pollution in the environment has received increasing attention and is now an emerging research area. Many studies have focused on quantifying microplastic abundance in the marine environment, while there are relatively few data on microplastic occurrence in freshwater environment. Recent studies have reported high concentrations of microplastics in lakes and rivers, although the understanding of several factors influencing source, transport and fate is still limited. This study compares different lakes and the common factors, which could influence the occurrence and distribution of microplastics. The three subalpine lakes monitored include Lake Maggiore, Iseo and Garda. The selected sampling transects reflect the hydrologic conditions, the morphometric characteristics of these lakes, and other factors influencing the release of plastics debris in lakes. Particles of microplastics (<5 mm) were found in all sampled surfaces. The particles collected were classified depending on their number, shape and composition. The shape distribution showed the dominating occurrence of fragments (73.7%). The chemical composition of all examined samples clearly shows dominating presence of polyethylene (45%), polystyrene (18%) and polypropylene (15%). The results provide significant relations among the different contribution of direct and diffuse sources to the quantity of microplastics, highlighting the importance of understanding the spatial distribution dynamics of microplastics within a lake system that acts as a sink and source of plastic particles.
显示更多 [+] 显示较少 [-]Occurrence of intracellular and extracellular antibiotic resistance genes in coastal areas of Bohai Bay (China) and the factors affecting them
2018
Zhang, Yongpeng | Niu, Zhiguang | Zhang, Ying | Zhang, Kai
Coastal areas are the transition zones between ocean and land where intracellular antibiotic resistance genes (iARGs) and extracellular antibiotic resistance genes (eARGs) could spread among marine organisms, and between humans and marine organisms. However, little attention has been paid to the combined research on iARGs and eARGs in marine environment. In this context, we collected water and sediment samples from the coastal areas of the Bohai Bay in China and performed molecular and chemical analyses. The results of quantitative real-time PCR (qPCR) showed that the relative abundance of eARGs was up to 4.3 ± 1.3 × 10−1 gene copies/16S rRNA copies in the water samples and 2.6 ± 0.3 × 10−3 gene copies/16S rRNA copies in the sediment samples. Also, the abundance of eARGs was significantly higher than that of iARGs. Furthermore, the average abundances of antibiotic resistance genes (ARGs, include iARGs and eARGs) were the highest in both the water and sediment samples from the estuaries. The results of liquid chromatography-mass spectrometry showed that the concentrations of antibiotics in estuaries and areas near the mariculture site were higher than that in the other sites. The class 1 integron gene (int1) and sul1 in the intracellular DNA were significantly correlated in the water samples. Moreover, significant correlation between int1 and sul2 in the extracellular DNA was also found in the sediment samples. The combination of sulfamerazine and tetracycline as well as the combination of sulfamethazine and dissolved oxygen can both explain the abundance of ARGs, implying the combined effects of multiple stresses on ARGs.
显示更多 [+] 显示较少 [-]Biotransformation of disperse dyes using nitroreductase immobilized on magnetic particles modified with tosyl group: Identification of products by LC-MS-MS and theoretical studies conducted with DNA
2018
Franco, Jefferson Honorio | Silva, Bianca F. da | de Castro, Alexandre A. | Ramalho, Teodorico C. | Pividori, María Isabel | Zanoni, Maria Valnice Boldrin
The present work evaluates the action of nitroreductase enzyme immobilized on Tosylactivated magnetic particles (MP-Tosyl) on three disperse dyes which contain nitro and azo groups. The dyes included Disperse Red 73 (DR 73), Disperse Red 78 (DR 78), and Disperse Red 167 (DR 167). The use of a magnet enabled the rapid and easy removal of the immobilized enzyme after biotransformation; this facilitated the identification of the products generated using high-performance liquid chromatography with diode array detector (HPLC-DAD) and mass spectrometry (LC-MS/MS). The main products formed by the in vitro biotransformation were identified as the product of nitro group reduction to the correspondent amine groups, which were denoted as follows: 50% of 2-(2-(4-((2-cyanoethyl)(ethyl)amino)phenyl)hydrazinyl)-5-nitrobenzonitrile, 98% of 3-((4-((4-amino-2-chlorophenyl) diazenyl)phenyl) (ethyl)amino)propanenitrile and 99% of (3-acetamido-4 - ((4-amino-2-chlorophenyl) diazenyl) phenyl) azanediyl) bis (ethane-2,1-diyl) for DR 73, DR 78 and DR 167, respectively. Based on the docking studies, the dyes investigated were found to be biotransformed by nitroreductase enzyme due to their favorable interaction with the active site of the enzyme. Theoretical results show that DR73 dye exhibits a relatively lower rate of degradation; this is attributed to the cyanide substituent which affects the electron density of the azo group. The docking studies also indicate that all the dyes presented significant reactivity towards DNA. However, Disperse Red 73 was found to exhibit a substantially higher reactivity compared to the other dyes; this implies that the dye possesses a relatively higher mutagenic power. The docking results also show that DR 73, DR 78 and DR 167 may be harmful to both humans and the environment, since the mutagenicity of nitro compounds is associated with the products formed during the reduction of nitro groups. These products can interact with biomolecules, including DNA, causing toxic and mutagenic effects.
显示更多 [+] 显示较少 [-]Effect of aging in field soil on biochar's properties and its sorption capacity
2018
Ren, Xinhao | Sun, Hongwen | Wang, Fei | Zhang, Peng | Zhu, Hongkai
Due to its high sorption capacity for different kinds of contaminants, biochar is advocated as a novel remediation strategy for contaminated soils. However, it is not clear how long this extraordinary sorption capacity will be maintained after the biochar is applied to the soil. In this study, a commercial biochar was applied to an agricultural soil, and the sorption of atrazine and phenanthrene on biochar amended soils with different aging periods ranging from 0 to 2 y was investigated. The application of fresh biochar in soil led to an obvious enhancement of the sorption coefficients (Kd) of atrazine and phenanthrene (by 3.13 and 2.93 times at Cₑ = 0.01 Sw, respectively) compared with the untreated soil. The surface area of biochar first increased and then decreased with aging time. Correspondingly, the sorption of atrazine and phenanthrene on the biochar amended soils first increased and then decreased markedly. Based on the changing trend of the Kd values with aging time, it could be predicted that the sorption capacity of biochar amended soils will decrease to the level of the untreated soil after 2.5 y.
显示更多 [+] 显示较少 [-]