细化搜索
结果 1011-1020 的 7,290
Early life PCB138 exposure induces kidney injury secondary to hyperuricemia in male mice 全文
2022
Ruan, Fengkai | Liu, Changqian | Hu, Weiping | Ruan, Jinpeng | Ding, Xiaoyan | Zhang, Lu | Yang, Chunyan | Zuo, Zhenghong | He, Chengyong | Huang, Jiyi
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants (POPs) that have adverse effects on human health. However, the long-term health effects and potential mechanism of neonatal exposure to PCBs are still unclear. In this study, nursing male mice exposed to PCB138 at 0.5, 5, and 50 μg/kg body weight (bw) from postnatal day (PND) 3 to PND 21 exhibited increased serum uric acid levels and liver uric acid synthase activity at 210 days of age. We also found an increased kidney somatic index in the 50 μg/kg group and kidney fibrosis in the 5 and 50 μg/kg groups. Mechanistically, PCB138 induced mitochondrial dysfunction and endoplasmic reticulum (ER) stress, which might have led to inflammatory responses, such as activation of the NF-κB (nuclear factor kappa-B) and NLRP3 (NOD-like receptor protein 3) pathways. The inflammatory response might regulate renal fibrosis and hypertrophy. In summary, this study reports a long-term effect of neonatal PCB exposure on uric acid metabolism and secondary nephrotoxicity and clarifies the underlying mechanism. Our work also indicates that early life pollutant exposure may be an important cause of diseases later in life.
显示更多 [+] 显示较少 [-]The reaction laws and toxicity effects of phthalate acid esters (PAEs) ozonation degradation on the troposphere 全文
2022
Huo, Yanru | An, Zexiu | Li, Mingxue | Sun, Jianfei | Jiang, Jinchan | Zhou, Yuxin | He, Maoxia
Low-molecular-weight (LMW) phthalate acid esters (PAEs) tend to enter the atmosphere, flying for several kilometers, so it is easy to endanger human health. This work is the first to use quantum chemistry calculations (Gaussian 16 program) and computational toxicology (ECOSAR, TEST, and Toxtree software) to comprehensively study the ozonolysis mechanism of six LMW PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), diisopropyl phthalate (DIP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP)) in the atmosphere and the toxicity of DMP (take DMP as an example) in the conversion process. The results show that the electron-donating effect of the ortho position of the LMW PAEs has the most obvious influence on the ozonolysis. We summarized the ozonation reaction law of LMW PAEs at the optimal reaction site. At 298 K, the law of initial ozonolysis total rate constant of the LMW PAEs is kDIP > kDPP > kDIBP > kDMP > kDEP > kDBP, and the range is 9.56 × 10⁻²⁵ cm³ molecule⁻¹ s⁻¹ — 1.47 × 10⁻²² cm³ molecule⁻¹ s⁻¹. According to the results of toxicity assessment, the toxicity of products is lower than DMP for aquatic organisms after ozonolysis. But those products have mutagenicity, developmental toxicity, non-genotoxicity, carcinogenicity, and corrosiveness to the skin. The proposed ozonolysis mechanism promotes our understanding of the environmental risks of PAEs and provides new ideas for studying the degradation of PAEs in the tropospheric gas phase.
显示更多 [+] 显示较少 [-]Gestational phthalate exposure and lung function during childhood: A prospective population-based study 全文
2022
Bosch de Basea, Magda | Carsin, Anne-Elie | Abellan, Alicia | Cobo, Inés | Lertxundi, Aitana | Marin, Natalia | Soler-Blasco, Raquel | Ibarluzea, Jesús | Vrijheid, Martine | Sunyer, Jordi | Casas, Maribel | Garcia-Aymerich, Judith
The potential effect of gestational exposure to phthalates on the lung function levels during childhood is unclear. Therefore, we examined this association at different ages (from 4 to 11 years) and over the whole childhood. Specifically, we measured 9 phthalate metabolites (MEP, MiBP, MnBP, MCMHP, MBzP, MEHHP, MEOHP, MECPP, MEHP) in the urine of 641 gestating women from the INMA study (Spain) and the forced vital capacity (FVC), forced expiratory volume in 1 s (FEV₁) and FEV₁/FVC in their offspring at ages 4, 7, 9 and 11. We used linear regression and mixed linear regression with a random intercept for subject to assess the association between phthalates and lung function at each study visit and for the overall childhood, respectively. We also assessed the phthalate metabolites mixture effect on lung function using a Weighted Quantile Sum (WQS) regression. We observed that the phthalate metabolites gestational levels were consistently associated with lower FVC and FEV₁ at all ages, both when assessed individually and jointly as a mixture, although most associations were not statistically significant. Of note, a 10% increase in MiBP was related to lower FVC (−0.02 (−0.04, 0)) and FEV₁ z-scores (−0.02 (−0.04, −0.01) at age 4. Similar significant reductions in FVC were observed at ages 4 and 7 associated with an increase in MEP and MnBP, respectively, and for FEV₁ at age 4 associated with an increase in MBzP. WQS regression consistently identified MBzP as an important contributor to the phthalate mixture effect. We can conclude that the gestational exposure to phthalates was associated with children's lower FVC and FEV₁, especially in early childhood, and in a statistically significant manner for MEP, MiBP, MBzP and MnBP. Given the ubiquity of phthalate exposure and its established endocrine disrupting effects in children, our findings support current regulations that limit phthalate exposure.
显示更多 [+] 显示较少 [-]Where and how? A systematic review of microplastic pollution on beaches in Latin America and the caribbean (LAC) 全文
2022
Mesquita, Yan Weber | Mengatto, Mateus Farias | Nagai, Renata Hanae
The dispersion of microplastics (MPs) in coastal and marine environments and their potential harmful effects on organisms and ecosystems makes MPs pollution an emerging problem that has gained increasing attention from the scientific community. Despite the recent increase in the number of studies on MPs presence in different marine environments, investigations in Latin America and the Caribbean (LAC) are still relatively limited. This review presents the spatial distribution (where) and the methods applied (how) in assessing MPs contamination on LAC sandy beaches, identifying the challenges to be faced in advancing the understanding of this emerging contaminant. Most of the 39 papers reviewed were published between 2020 and 2021 (51%) and conducted on Brazilian beaches (43%). The LAC investigations apply spot sampling (69%) on shoreline stretches between 10 and 1000 km (59%). These works used inconsistent sampling methods, incomparable techniques for MPs extraction from sediments, and different measurement units to report their data. The MPs presence on LAC beaches is not negligible, as it varies significantly in its distribution and concentration (0–2457 MP/dw kg and 0–5458 MP/m²). Its highest accumulation is on ocean island beaches; however, there are still large stretches of coastline (Cuba, Venezuela, Argentina) with no data on MPs presence and a small number of studies exploring these contaminants' temporal variability. The lack of standardization in the studies’ methodologies, particularly their measurement units, hinders their quantitative comparison and our ability to establish baseline values regarding MPs abundance on LAC beaches. In this sense, future works should direct efforts towards the spatial and temporal expansion of their sampling, as well as protocol standardization to facilitate result comparability on MPs on LAC sandy beaches.
显示更多 [+] 显示较少 [-]Size-fractionated PM-bound PAHs in urban and rural atmospheres of northern Thailand for respiratory health risk assessment 全文
2022
Insian, Wittawat | Yabueng, Nuttipon | Wiriya, Wan | Chantara, Somporn
Size-fractionated particulate matters (SPMs) in a range of 9.0 to 0.43 μm, classified based on aerodynamic diameter (dₐₑ) as fine PMs (0.43 μm ≤ dₐₑ < 2.1 μm) and coarse PMs (2.1 μm ≤ dₐₑ < 9.0 μm) were collected by cascade impactors (7 fractions) during smoke haze (SH) and non-smoke haze (NSH) seasons in urban and rural areas of Chiang Mai, Thailand. Their polycyclic aromatic hydrocarbons (PAHs) compositions were determined for respiratory health risk assessment. During SH episode, concentrations of SPMs and PAHs in the rural area were approximately two times higher than in the urban area and about 62–68% of the SPMs were fine particles. Conversely, during NSH season the concentrations in the urban area were higher due to traffic emission. The finest particle sizes (0.65–0.43 μm) contained the highest PAHs concentrations among the other PM sizes. Benzo[b]fluoranthene was a main PAH component found during SH season suggesting biomass burning is a major pollutant source. High molecular weight (5–6 rings) PAHs with high carcinogenicity were likely to concentrate in fine particles. Distribution patterns of SPMs and PAHs during SH season were bimodal with the highest peak at a fine size range (0.65–0.43 μm) and a small peak at a coarse size range (5.8–4.7 μm). Respiratory health risk was estimated based on toxicity equivalent concentrations of PAHs bound-SPMs and inhalation cancer risk (ICR). Relatively high ICR values (1.14 × 10⁻⁴ (rural) and 6.80 × 10⁻⁵ (urban)) were found during SH season in both areas, in which fine particles played an important role. It revealed that high concentration of fine particles in ambient air is related to high respiratory health risk due to high content of carcinogenic substances.
显示更多 [+] 显示较少 [-]Elevation of NO3−-N from biochar amendment facilitates mitigating paddy CH4 emission stably over seven years 全文
2022
Nan, Qiong | Fang, Chenxuan | Cheng, Linqi | Hao, Wang | Wu, Weixiang
Biochar application into paddy is an improved strategy for addressing methane (CH₄) stimulation of straw biomass incorporation. Whereas, the differentiative patterns and mechanisms on CH₄ emission of straw biomass and biochar after long years still need to be disentangled. Considering economic feasibility, a seven-year of field experiment was conducted to explore the long-term CH₄ mitigation effect of annual low-rate biochar incorporation (RSC, 2.8 t ha⁻¹), with annual rice straw incorporation (RS, 8 t ha⁻¹) and control (CK, with no biochar or rice straw amendment incorporation) as a comparation. Results showed that RSC mitigated CH₄ emission while RS stimulated CH₄ significantly (p < 0.05) and stably over 7 experimental years compared with CK. RSC mitigated 14.8–46.7% of CH₄ emission compared with CK. In comparison to RSC, RS increased 111–950.5% of CH₄ emission during 7 field experimental years. On the 7th field experimental year, pH was significantly increased both in RS and RSC treatment (p < 0.05). RSC significantly (p < 0.05) increased soil nitrate (NO₃⁻-N) compared with RS while RS significantly (p < 0.05) increased dissolved carbon (DOC) compared to RSC. Soil NO₃⁻-N inhibition on methanogens and promotion on methanotrophs activities were verified by laboratory experiment, while soil pH and DOC mainly promoted methanogens abundance. Significantly (p < 0.05) increased DOC and soil pH enhanced methanogens growth and stimulated CH₄ emission in RS treatment. Higher soil NO₃⁻-N content in RSC than CK and RS contributed to CH₄ mitigation. Soil NO₃⁻-N and DOC were identified as the key factors differentiating CH₄ emission patterns of RS and RSC in 2019. Collectively, soil NO₃⁻-N impacts on CH₄ flux provide new ideas for prolonged effect of biochar amendment on CH₄ mitigation after years.
显示更多 [+] 显示较少 [-]Elevated particle acidity enhanced the sulfate formation during the COVID-19 pandemic in Zhengzhou, China 全文
2022
Yang, Jieru | Wang, Shenbo | Zhang, Ruiqin | Yin, Shasha
The significant reduction in PM₂.₅ mass concentration after the outbreak of COVID-19 provided a unique opportunity further to study the formation mechanism of secondary inorganic aerosols. Hourly data of chemical components in PM₂.₅, gaseous pollutants, and meteorological data were obtained from January 1 to 23, 2020 (pre-lockdown) and January 24 to February 17, 2020 (COVID-lockdown) in Zhengzhou, China. Sulfate, nitrate, and ammonium were the main components of PM₂.₅ during both the pre-lockdown and COVID-lockdown periods. Compared with the pre-lockdown period, even though the concentration and proportion of nitrate decreased, nitrate was the dominant component in PM₂.₅ during the COVID-lockdown period. Moreover, nitrate production was enhanced by the elevated O₃ concentration, which was favorable for the homogeneous and hydrolysis nitrate formation despite the drastic decrease of NO₂. The proportion of sulfate during the COVID-lockdown period was higher than that before. Aqueous-phase reactions of H₂O₂ and transition metal (TMI) catalyzed oxidations were the major pathways for sulfate formation. During the COVID-lockdown period, TMI-catalyzed oxidation became the dominant pathway for aqueous-phase sulfate formation because the elevated acidity favored the dissolution of TMI. Therefore, the enhanced TMI-catalyzed oxidation affected by the elevated particle acidity dominated the sulfate formation, resulting in the slight increase of sulfate concentration during the COVID-lockdown period in Zhengzhou.
显示更多 [+] 显示较少 [-]Coupling strategies for ecotoxicological assessment of neonicotinoid insecticides based on their selective lethal effects: Design, screening, and regulation 全文
2022
Zhao, Yuanyuan | Xixi Li, | Xinao Li, | Zheng, Maosheng | Zhang, Yimei | Li, Yu
The recently recognized adverse environmental and toxic effects of neonicotinoid insecticides (NNIs) on non-target organisms are alarming. A comprehensive design, screening, and regulatory system was developed to generate NNI derivatives and mutant receptors with selective-ecotoxicological effects to overcome such adverse effects. For ligand design, taking ACE-09 derivative as an example, the toxicity on non-target animals (aboveground: bees; underground: earthworms), plant absorption, and soil absorption decreased by 4.80% and 13.7%, 10.0%, and 121%, while the toxicity on target animals (aboveground: aphids; underground: B. odoriphagas), plant metabolism, and soil degradation increased by 70.2% and 51.7%, 5.08%, and 8.28%. For receptor modification, the ability of mutants to absorb ACE-09 derivative decreased by 31.0%, while the ability of mutants to metabolize ACE-09 derivative increased by 28.0% in scenario 2 (mainly plant selectivity); the ability of mutants to degrade ACE-09 derivative increased by 11.6% in scenario 3 (mainly soil selectivity). The above results indicated that the selective-ecotoxicological effects of ligand design and receptor modification were both improved. Additionally, the combined effects of the ACE-09 derivative on plant absorption and metabolic mutants improved by 31.1% and 31.4% in scenario 2, respectively, while the effect on microbial degradation mutant improved by 14.9%, indicating that there was a synergistic effect between ligand design and receptor modification. Finally, based on the interaction between the ACE-09 derivative and mutants, the optimal environmental factors that improved the selectivity of their ecotoxicological effects were determined. For example, alternate application of nitrogen and phosphorus fertilizers effectively reduced the oxidative damage to plants caused by NNI residues. The novel ligand-receptor joint modification method, combined with the regulation of environmental factors under multiple scenarios, can biochemically address the ecotoxicological concern and highlight the harmful effects of pesticides on the environment and non-target organisms.
显示更多 [+] 显示较少 [-]Effects of synthesis temperature on ε-MnO2 microstructures and performance: Selective adsorption of heavy metals and the mechanism onto (100) facet compared with (001) 全文
2022
Yang, Yuebei | Wang, Yaozhong | Li, Xiaofei | Xue, Chao | Dang, Zhi | Zhang, Lijuan | Yi, Xiaoyun
The heavy-metal adsorbent ε-MnO₂ was produced through a simple, one-step oxidation-reduction reaction at three different synthesis temperatures (25 °C, 50 °C and 75 °C) and their morphology and chemical-physical properties were compared. Of the three materials, MnO₂-25 had the largest specific surface area and the highest surface hydroxyl concentration. Its optimal performance was demonstrated by batch adsorption experiments with Pb²⁺, Cd²⁺ and Cu²⁺. Of the three metals, Pb²⁺ was adsorbed best (339.15 mg/g), followed by Cd²⁺ (107.50 mg/g) and Cu²⁺ (86.30 mg/g). When all three metals were present, Pb²⁺ was still absorbed best but now more Cu²⁺ was adsorbed than Cd²⁺. In order to explore the mechanism for the inconsistent adsorption order of Cd²⁺ and Cu²⁺ in single and competitive adsorption, we combined experimental data with density functional theory (DFT) calculations to elucidate the distinct adsorption nature of MnO₂-25 towards these three metals. This revealed that the adsorption affinity of the (100) facet was superior to (001), and since the surface complexes were also more stable on (100), this facet was most likely determining the adsorption order for the single metals. When the metals were present in combination, Pb²⁺ preferentially occupied the active adsorption sites of (100), forcing Cu²⁺ to be adsorbed on the (001) facet where Cd²⁺ was only poorly bound. Thus, the adsorption behavior was affected by MnO₂-25 surface chemistry at a molecular scale. This study provides an in-depth understanding of the adsorption mechanisms of the heavy metals on this adsorbent and offers theoretical guidance for production of adsorbent with improved removal efficiency.
显示更多 [+] 显示较少 [-]Adsorption performance and mechanism of cationic and anionic dyes by KOH activated biochar derived from medical waste pyrolysis 全文
2022
Ullah, Fahim | Ji, Guozhao | Irfan, Muhammad | Gao, Yuan | Shafiq, Farishta | Sun, Ye | Ain, Qurat Ul | Li, Aimin
The massive generation of medical waste (MW) results in a series of environmental, social, and ecological problems. Pyrolysis is one such approach that has attracted more attention because of the production of value-added products with lesser environmental risk. In this study, the activated biochar (ABC600) was obtained from MW pyrolysis and activated with KOH. The adsorption mechanism of activated biochar on cationic (methylene blue) and anionic (reactive yellow) dyes were studied. The physicochemical characterization of biochar showed that increasing pyrolysis temperature and KOH activation resulted in increased surface area, a rough surface with a clear porous structure, and sufficient functional groups. MB and RYD-145 adsorption on ABC600 was more consistent with Langmuir isotherm (R² ≥ 0.996) and pseudo-second-order kinetics (R² ≥ 0.998), indicating chemisorption with monolayer characteristics. The Langmuir model fitting demonstrated that MB and RYD-145 had maximum uptake capacities of 922.2 and 343.4 mg⋅g⁻¹. The thermodynamics study of both dyes showed a positive change in enthalpy (ΔH°) and entropy (ΔS°), revealing the endothermic adsorption behavior and randomness in dye molecule arrangement on activated-biochar/solution surface. The activated biochar has excellent adsorption potential for cationic and anionic dyes; hence, it can be considered an economical and efficient adsorbent.
显示更多 [+] 显示较少 [-]