细化搜索
结果 1031-1040 的 1,955
Removal of Metaldehyde Through Photocatalytic Reactions Using Nano-Sized Zinc Oxide Composites 全文
2013
Doria, F. C. | Borges, A. C. | Kim, Chae-gwang | Nathan, A. | Joo, J. C. | Campos, L. C.
Metaldehyde is a selective molluscicide used in the agricultural and residential sector to control slugs and snails for a wide variety of crops. In recent years, some water companies have started monitoring drinking water supply catchments for presence of this compound, with positive and concern results. Conventional techniques are yet to achieve complete efficient and feasible removal of metaldehyde. The aim of this study was to measure the efficiency of nano-sized zinc oxide/laponite composites (NZnC) in the effective removal of metaldehyde (influent concentration of 500 μg dm⁻³) through the interaction of photocatalysis. Reaction time, pH of sample solution and NZnC mass were tested against each other using a rotatable central composite design method of experimentation. Statistical tests showed that linear effects of time, quadratic/linear effects of NZnC mass and the interaction of pH and NZnC mass proved to be the most significant variables for degrading metaldehyde. Optimal values of each variable for the highest removal efficiency were achieved, being pH equal to 10.4 and NZnC mass added equal to 28 g. The rate of reaction was then predicted by non-linear regression of four models. The best fit was provided by the modified first-order with residual kinetic model, with the apparent degradation coefficient k equal to 0.0363 min⁻¹ and the lowest remaining metaldehyde concentration observed among all runs was 278.7 μg dm⁻³. NZnC has shown to be a prominent nanotechnology for metaldehyde removal.
显示更多 [+] 显示较少 [-]Long-Term Effects of Liming on Soil Chemistry in Stable and Eroded Upland Areas in a Mining Region 全文
2013
Nkongolo, K. K. | Spiers, G. | Beckett, P. | Narendrula, R. | Theriault, G. | Tran, A. | Kalubi, K. N.
Knowledge of the levels of both total metal content and metal bioavailability is critical for understanding the long-term effects of liming on soil chemistry and potential metal uptake by biota. In the present study, the long-term effects of liming on metal bioavailability in soils contaminated by smelter emissions were assessed in eroded and stable uplands in the Sudbury region, Ontario, Canada. Analytical results revealed that total metal and nutrient contents of the soil matrix are not dominantly in forms available for plant uptake for these soils. On average, only 1 and 1.1 % of total copper and nickel, respectively, were phytoavailable. Landscape topography, site stability, and smelter proximity all play an important role in metal accumulation in the surface organic and mineral horizons of regional soils. The levels of total and bioavailable elements for eroded sites were always smaller for stable and reference sites. The pH in limed sites was significantly higher, ranging from 4.12 to 6.75, in the humus form compared to unlimed areas, even 20 to 30 years following applications of the crushed dolostone (liming). No significant differences between limed and unlimed areas were found for total metal and nutrient contents. Interestingly, in the higher pH limed areas, the levels of bioavailable Al, Co, Cu, Fe, K, Mn, Ni, and Sr were lower than on unlimed areas. © 2013 Springer Science+Business Media Dordrecht.
显示更多 [+] 显示较少 [-]Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area 全文
2013
Phong, N. D. | Tuong, T. P. | Phu, N. D. | Nang, N. D. | Hoanh, Chu Thai
Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area 全文
2013
Phong, N. D. | Tuong, T. P. | Phu, N. D. | Nang, N. D. | Hoanh, Chu Thai
The in-depth knowledge on management and reducing annual acidic pollution is important for improving the sustainable livelihood of people living in areas with acid sulphate soils (ASS). This study involved a long-term (2001–2006), large-scale canal water quality monitoring network (87 locations) and a field experiment at nine sites to quantify the dynamic variability of acidic pollution and its source in a coastal area with ASS in the Mekong River Delta of Vietnam. Widespread acidic pollution (pH <5) of surface water occurred at the beginning of the rainy season, while pH of the canal water remained high (7–8) at the end of the rainy season and during the dry season. The study identified canal embankment deposits, made of ASS spoils from canal dredging/excavation, as the main source of acidic pollution in the surrounding canal network. The findings suggested that there was a linkage between the amount of acidic loads into canal networks and the age of the embankment deposits. The most acute pollution (pH ~ 3) occurred in canals with sluggish tidal water flow, at 1–2 years after the deposition of excavated spoils onto the embankments in ASS. The amount of acidic loads transferred to the canal networks could be quantified from environmental parameters, including cumulative rainfall, soil type and age of embankment deposits. The study implied that dredging/excavation of canals in ASS areas must be carried out judiciously as these activities may increase the source of acidic pollution to the surrounding water bodies.
显示更多 [+] 显示较少 [-]Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area 全文
2013
Phong, N.D. | To Phuc Tuong | Phu, N.D. | Nang, N.D. | Hoanh, Chu Thai
The in-depth knowledge on management and reducing annual acidic pollution is important for improving the sustainable livelihood of people living in areas with acid sulphate soils (ASS). This study involved a long-term (2001-2006), large-scale canal water quality monitoring network (87 locations) and a field experiment at nine sites to quantify the dynamic variability of acidic pollution and its source in a coastal area with ASS in the Mekong River Delta of Vietnam. Widespread acidic pollution (pH <5) of surface water occurred at the beginning of the rainy season, while pH of the canal water remained high (7-8) at the end of the rainy season and during the dry season. The study identified canal embankment deposits, made of ASS spoils from canal dredging/excavation, as the main source of acidic pollution in the surrounding canal network. The findings suggested that there was a linkage between the amount of acidic loads into canal networks and the age of the embankment deposits. The most acute pollution (pH ~ 3) occurred in canals with sluggish tidal water flow, at 1-2 years after the deposition of excavated spoils onto the embankments in ASS. The amount of acidic loads transferred to the canal networks could be quantified from environmental parameters, including cumulative rainfall, soil type and age of embankment deposits. The study implied that dredging/excavation of canals in ASS areas must be carried out judiciously as these activities may increase the source of acidic pollution to the surrounding water bodies.
显示更多 [+] 显示较少 [-]Photodegradation of Volatile Organic Compounds in the Water-Soluble Fraction of Kuwait Crude Oil in Seawater: Effect of Environmental Factors 全文
2013
Saeed, Talat | Ali, Lulwa N. | Al-Bloushi, Amal | Al-Hashash, Huda | Al-Bahloul, Majed | Al-Khabbaz, Ahmad | Ali, Sadika G.
Volatile organic compounds (VOCs) are ubiquitous in marine areas in many parts of the world. Effect of environmental factors (light intensity, temperature, oxygen levels, and presence of sensitizer) on photodegradation of VOCs present in water-soluble fraction of Kuwait crude oil was investigated in laboratory conditions. The results showed that all factors investigated had significant effects on photo degradation rates. Higher temperatures produced faster degradation rates. At 15 °C, most of the volatile optimally degraded when light intensity was set at 750 W/m². Oxygen level of 7 ppm and presence of sensitizer was also required. Oxygen level of 4 ppm and light intensity of 500 W/m² and presence of a sensitizer produced optimal degradation rates for most of the compounds at 30 °C. At 40 °C, deoxygenated water-soluble fraction and light intensity of 500 W/m² produced the fastest degradation for many of the volatile compounds. Linear regression indicated that for most of the compounds temperature had the greatest effect on degradation rates.
显示更多 [+] 显示较少 [-]Testing Contamination Risk Assessment Methods for Mine Waste Sites 全文
2013
Abdaal, A. | Jordan, G. | Szilassi, P.
Major incidents involving mine waste facilities and poor environmental management practices have left the legacy of thousands of contaminated sites like in the historic mining areas in the Carpathian Basin. Associated environmental risks have triggered the development of new EU environmental legislation to prevent and minimize the effects of such incidents. The Mine Waste Directive requires the risk-based inventory of all mine waste sites in Europe by May 2012. In order to address the mining environmental problems, a standard risk-based pre-selection protocol has been developed by the EU Commission. The protocol consists of 18 simple questions about contamination source, pathway and receptor. This paper evaluates the protocol by applying it to real-life cases, adopting it to local conditions, comparing to the similar method of the European Environmental Agency standard Preliminary Risk Assessment Model (PRAMS) and by carrying out uncertainty analysis. All together, 145 ore mine waste sites have been selected for scientific testing and evaluation using the EU Mining Waste Directive (MWD) Pre-selection Protocol as a case study from Hungary. The proportion of uncertain responses to questions in the protocol for the mine waste site gives an insight of specific and overall uncertainty in the data used. Questions of the EU MWD Pre-selection Protocol are linked to a GIS system, and key parameters such as the topographic slope and distance to the nearest surface and groundwater bodies to settlements and protected areas are calculated and statistically evaluated in order to adjust the RA models to local conditions in Hungary. Results show that the adjustment of threshold values to local conditions is necessary; however, the EU MWD Pre-selection Protocol is robust and is relatively insensitive to threshold values. Results of the EU MWD Pre-selection Protocol are consistent with the pre-screening European Environmental Agency PRAMS model which further confirms that the Protocol delivers reliable selection results that are not sensitive to the selected parameters. An interesting outcome of the study is that the highest uncertainty is associated with the engineering conditions of the waste facilities, such as the heights and size.
显示更多 [+] 显示较少 [-]Nitrous Oxide Emissions from Cropland: a Procedure for Calibrating the DayCent Biogeochemical Model Using Inverse Modelling 全文
2013
Rafique, Rashad | Fienen, Michael N. | Parkin, Timothy B. | Anex, Robert P.
DayCent is a biogeochemical model of intermediate complexity widely used to simulate greenhouse gases (GHG), soil organic carbon and nutrients in crop, grassland, forest and savannah ecosystems. Although this model has been applied to a wide range of ecosystems, it is still typically parameterized through a traditional "trial and error" approach and has not been calibrated using statistical inverse modelling (i.e. algorithmic parameter estimation). The aim of this study is to establish and demonstrate a procedure for calibration of DayCent to improve estimation of GHG emissions. We coupled DayCent with the parameter estimation (PEST) software for inverse modelling. The PEST software can be used for calibration through regularized inversion as well as model sensitivity and uncertainty analysis. The DayCent model was analysed and calibrated using N2O flux data collected over 2 years at the Iowa State University Agronomy and Agricultural Engineering Research Farms, Boone, IA. Crop year 2003 data were used for model calibration and 2004 data were used for validation. The optimization of DayCent model parameters using PEST significantly reduced model residuals relative to the default DayCent parameter values. Parameter estimation improved the model performance by reducing the sum of weighted squared residual difference between measured and modelled outputs by up to 67 %. For the calibration period, simulation with the default model parameter values underestimated mean daily N2O flux by 98 %. After parameter estimation, the model underestimated the mean daily fluxes by 35 %. During the validation period, the calibrated model reduced sum of weighted squared residuals by 20 % relative to the default simulation. Sensitivity analysis performed provides important insights into the model structure providing guidance for model improvement. © 2013 Springer Science+Business Media Dordrecht.
显示更多 [+] 显示较少 [-]A Pretreatment Method for Analysing Albendazole by HPLC in Plant Material 全文
2013
Marciocha, D. | Kalka, J. | Turek-Szytow, J. | Surmacz-Górska, J.
Albendazole (ALB) belongs to a group of benzimidazoles - classified as antiparasitic pharmaceuticals. Its widespread application results in the presence of this pharmaceutical in natural environment (water and soil). In this paper a suitable pretreatment method was established including sampling, freeze-drying and extraction. Vicia faba was used as model organism. ALB accumulation by plant tissues was observed in hydroponic culture as well as in soil. The range of pharmaceutical concentrations was 1.7 × 10-5 mol/L (in hydroponic culture) and 1.7 × 10-5 to 1.7 × 10-4 mol/kg air dry soil (in soil). Observations were conducted for 14 days. After this time biological material was freeze-dried and after homogenization, dimethyl sulfoxide (DMSO) extraction was performed. The recovery of ALB for the roots was 93 % while for the shoots 86 %. After cleaning, the samples were subjected to further analysis by HPLC system. Phosphate buffer and acetonitrile (50:50) were used as a mobile phase. Drug retention time was 6.3 min. Results obtained in this experiment indicate higher drug accumulation in roots rather than in the hypocotyl part of the plant, cultivated both in soil and in hydroponic culture. © 2013 The Author(s).
显示更多 [+] 显示较少 [-]Industry Wide Risk Assessment: A Case Study of Cu in Australian Vineyard Soils 全文
2013
Wightwick, Adam M. | Reichman, Suzanne M. | Menzies, Neal W. | Allinson, Graeme
There are concerns over the environmental risks posed by Cu-based fungicide use, and there is community and regulatory pressure on viticultural industries to restrict the use of Cu-based fungicides. This study assesses the relative environmental risks posed by Cu-based and alternative synthetic organic fungicide compounds used in Australian vineyards, giving particular consideration to their adverse effects on soil microbial activity and how risks vary across different viticultural regions. The study was guided by key steps in the ecological risk assessment framework to analyse the risks of Cu-based fungicides towards soil organisms and involved four key steps: (1) problem formulation, (2) analysis (characterise exposure and effects), (3) risk characterisation and (4) risk assessment. There is evidence of a build-up of Cu-based fungicide residues in Australian vineyard soils, although this has occurred over many years, thus allowing the availability of Cu in the soil to be attenuated over time due to aging processes. On the whole, it appears that Cu-based fungicide residues are currently unlikely to pose a significant risk to soil organisms in Australian vineyard soils. However, there are indicators that continued applications of Cu-based fungicides may well have implications on the use of impacted land for sustainable agricultural production. Further detailed studies are required to enable a more definitive characterisation of the risks posed by Cu-based fungicide residues, such as establishing a clearer link between the laboratory and agricultural settings, investigating effects on other indicators of microbial activity and biodiversity and understanding the resilience of soil microbes to additional stressors. The challenge for agricultural industries and governments, both in Australia and globally, is to formulate appropriate plans to reduce the risks associated with Cu-based fungicide use. Further research is required to consider the relative risks of a wide range of alternative fungicide compounds to ensure that they pose a lower environmental risk than the Cu-based fungicides they may replace.
显示更多 [+] 显示较少 [-]Assessment of the Impacts of Climate Change on European Ozone Levels 全文
2013
Varotsos, K. V. | Giannakopoulos, C. | Tombrou, M.
The objective of this study is to investigate the potential impact of future climate change on ozone air quality in Europe. To provide a full assessment, simulations with the global chemical transport model GEOS-CHEM driven by the NASA Goddard Institute for Space Studies general circulation model (NASA/GISS GCM) are conducted. To isolate the effects from changes in climate and anthropogenic emissions four types of simulations are performed: (1) present-day climate and emissions (2) future climate following the IPCC Special Report on Emission Scenarios (SRES) A1B scenario and present-day anthropogenic emissions of ozone precursors (3) present-day climate and future emissions and (4) future climate and future emissions. Results indicate that climate change impact on its own leads to an increase of less than 3 ppb in western and central Europe whereas decreases are evident for the rest of the areas with the highest (about 2.5 ppb) in southeastern Europe (Italy, Greece). Increases are attributed to the increases of isoprene biogenic emissions due to increasing temperatures whereas decreases are associated with the increase of water vapor over sea which tends to decrease the lifetime of ozone as well as the increased wind speeds in the 2050 climate. When future emissions are implemented in the future climate simulations, the greatest increases are seen in the southwest and southeast Mediterranean (about 16 ppb) due to the increased isoprene biogenic emissions under higher levels of NO ₓ in the model. Decreases up to 2 ppb of ozone are shown for France, Switzerland, Northern Italy and northern Europe.
显示更多 [+] 显示较少 [-]Explanation of 47-Year BOD Alternation in a Japanese River Basin by BOD Generation and Discharge 全文
2013
Tsuzuki, Yoshiaki
Average and 75 % biochemical oxygen demand (BOD) in the Yamato-gawa River, Japan, in 1963 were smaller than the criteria determined in 1970 (5 mg l⁻¹); however, they were deteriorated up to 22–32 mg l⁻¹ in 1970. The deterioration was caused by the population increase and economic and urban development. The national-level regulations on ambient water quality and pollutant discharge have been established in 1970. Municipal wastewater is the major contributor in pollutant discharges in the river basin. Estimated BOD discharge (PD(BOD)) in the river basin reduced to the level of 1963 in 2000; however, average and 75 % BOD were more than the criteria. Analysis on the relationship between BOD and PD(BOD) resulted in the five phases in 1963–2009. The equilibrium conditions changed from phase I to II because of the perturbation caused by the excess BOD discharge, self-correcting mechanisms were found in phase III, and equilibrium conditions changed from phase III to IV and V. The comparison of estimated BOD based on pollutant generation (PG) without measures and monitored BOD represented the following situations in 47 years: (1) It took several years before the effects of centralised WWTPs were observed, (2) PD(BOD) was less than 35 t-BOD day⁻¹ for the linear relationship of PD(BOD) and BOD, and (3) combined effects of wastewater treatment, river water purification facilities and soft measures were estimated to be about 10 mg-BOD l⁻¹ in 2010.
显示更多 [+] 显示较少 [-]