细化搜索
结果 1031-1040 的 5,149
Surface water flooding, groundwater contamination, and enteric disease in developed countries: A scoping review of connections and consequences 全文
2018
Andrade, L. | O'Dwyer, J. | O'Neill, E. | Hynds, P.
Significant volumes of research over the past four decades has sought to elucidate the social, infrastructural, economic, and human health effects of climate change induced surface flooding. To date, epidemiological and public health studies of flooding events have focused on mental health effects, vector-borne diseases, and infectious enteric disease due to floodwater contact (i.e. typically low consumption rates). The inherent nature of groundwater (i.e. out of sight, out of mind) and the widely held belief that aquifers represent a pristine source of drinking water due to natural attenuation may represent the “perfect storm” causing direct consumption of relatively large volumes of surface flood-contaminated groundwater. Accordingly, the current study sought to systematically identify and synthesize all available peer-reviewed literature pertaining to the nexus between surface flooding, groundwater contamination and human gastroenteric outcomes. Just 14 relevant studies were found to have been published during the period 1980–2017, thus highlighting the fact that this potentially significant source of climate-related exposure to environmental infection has remained understudied to date. Studies differed significantly in terms of type and data reporting procedures, making it difficult to discern clear trends and patterns. Approximately 945 confirmed cases of flood-related enteric disease were examined across studies; these concurred with almost 10,000 suspected cases, equating to approximately 20 suspected cases per confirmed case. As such, no regional, national or global estimates are available for the human gastrointestinal health burden of flood-related groundwater contamination. In light of the demonstrable public health significance of the concurrent impacts of groundwater susceptibility and climate change exacerbation, strategies to increase awareness about potential sources of contamination and motivate precautionary behaviour (e.g. drinking water testing and treatment, supply interruptions) are necessary. Mainstreaming climate adaptation concerns into planning policies will also be necessary to reduce human exposure to waterborne sources of enteric infection.
显示更多 [+] 显示较少 [-]Photocatalytic degradation of DOM in urban stormwater runoff with TiO2 nanoparticles under UV light irradiation: EEM-PARAFAC analysis and influence of co-existing inorganic ions 全文
2018
Zhao, Chen | Wang, Zhihua | Wang, Shuzhong | Li, Xiang | Wang, Chong-Chen
In situ photocatalytic degradation of dissolved organic matter (DOM) of stormwater runoff can efficiently improve the aquatic environment quality and relieve the wastewater treatment pressure. In this work, photocatalytic degradation of DOM in TiO₂ (AEROXIDE® P-25) photocatalyst under illumination of ultraviolet (UV) light was carried out, considering the influence of various factors like TiO₂ dosage, solution pH along with the existence of co-existing ions (Cu²⁺ and H₂PO₄⁻). Generally, the variations of dissolved organic carbon (DOC), UV-based parameters and peak intensities of fluorescent constituents with UV exposure time fitted perfectly with the pseudo-first-order kinetics model. The total DOM removal efficiency was affected by diversiform factors like adsorption capacity of TiO₂, UV light utilization efficiency, reactive free radicals produced and the influence of co-existing ions. The results of fluorescence excitation-emission matrix (EEM) coupled with parallel factor analysis (PARAFAC) modeling demonstrated that all the photodegradation rates for three identified fluorescent constituents (protein-like constituent 1 and 3, humic-like constituent 2) were faster than UV-absorbing chromophores, suggesting the DOM molecules in urban stormwater runoff contained much more π*-π transition structures. In addition, H₂PO₄⁻ ions affected the photodegradation of DOM by capturing positive holes (h⁺) and hydroxyl radical (·OH), whereas Cu²⁺ ions were inclined to generate Cu-protein complexes that were more difficult to degrade than the other Cu-DOM complexes. This study supplied novel insights into the photocatalytic degradation mechanism of individual organic constituent in urban stormwater runoff and explored the influences of co-existing contaminants on their adsorption-photocatalysis processes.
显示更多 [+] 显示较少 [-]Mercury and lead exposure in avian scavengers from the Pacific Northwest suggest risks to California condors: Implications for reintroduction and recovery 全文
2018
Herring, Garth | Eagles-Smith, Collin A. | Varland, Daniel E.
Mercury (Hg) and lead (Pb) are widespread contaminants that pose risks to avian scavengers. In fact, Pb exposure is the primary factor limiting population recovery in the endangered California condor (Gymnogyps californianus) and Hg can impair avian reproduction at environmentally relevant exposures. The Pacific Northwest region of the US was historically part of the condor's native range, and efforts are underway to expand recovery into this area. To identify potential threats to reintroduced condors we assessed foraging habitats, Hg and Pb exposure, and physiological responses in two surrogate avian scavenger species (common ravens [Corvus corax] and turkey vultures [Cathartes aura] across the region between 2012 and 2016. Mercury exposure near the Pacific coast was 17–27-fold higher than in inland areas, and stable carbon and sulfur isotopes ratios indicated that coastal scavengers were highly reliant on marine prey. In contrast, Pb concentrations were uniformly elevated across the region, with 18% of the birds exposed to subclinical poisoning levels. Elevated Pb concentrations were associated with lower delta-aminolevulinic acid dehydratase (δ-ALAD) activity, and in ravens there was an interactive effect between Hg and Pb on fecal corticosterone concentrations. This interaction indicated that the effects of Hg and Pb exposure on the stress axis are bidirectional, and depend on the magnitude of simultaneous exposure to the other contaminant. Our results suggest that condors released to the Pacific Northwest may be exposed to both elevated Hg and Pb, posing challenges to management of future condor populations in the Pacific Northwest. Developing a robust monitoring program for reintroduced condors and surrogate scavengers will help both better understand the drivers of exposure and predict the likelihood of impaired health. These findings provide a strong foundation for such an effort, providing resource managers with valuable information to help mitigate potential risks.
显示更多 [+] 显示较少 [-]A proposed methodology for impact assessment of air quality traffic-related measures: The case of PM2.5 in Beijing 全文
2018
Fontes, Tânia | Li, Peilin | Barros, Nelson | Zhao, Pengjun
Air quality traffic-related measures have been implemented worldwide to control the pollution levels of urban areas. Although some of those measures are claiming environmental improvements, few studies have checked their real impact. In fact, quantitative estimates are often focused on reducing emissions, rather than on evaluating the actual measures’ effect on air quality. Even when air quality studies are conducted, results are frequently unclear.In order to properly assess the real impact on air quality of traffic-related measures, a statistical method is proposed. The method compares the pollutant concentration levels observed after the implementation of a measure with the concentration values of the previous year. Short- and long-term impact is assessed considering not only their influence on the average pollutant concentration, but also on its maximum level. To control the effect of the main confounding factors, only the days with similar environmental conditions are analysed. The changeability of the key meteorological variables that affect the transport and dispersion of the pollutant studied are used to identify and group the days categorized as similar. Resemblance of the pollutants' concentration of the previous day is also taken into account. The impact of the road traffic measures on the air pollutants’ concentration is then checked for those similar days using specific statistical functions.To evaluate the proposed method, the impact on PM₂.₅ concentrations of two air quality traffic-related measures (M1 and M2) implemented in the city of Beijing are taken into consideration: M1 was implemented in 2009, restricting the circulation of yellow-labelled vehicles, while M2 was implemented in 2014, restricting the circulation of heavy-duty vehicles. To compare the results of each measure, a time-period when these measures were not applied is used as case-control.
显示更多 [+] 显示较少 [-]Linking source characterisation and human health risk assessment of metals to rainfall characteristics 全文
2018
Liu, An | Mummullage, Sandya | Ma, Yukun | Egodawatta, Prasanna | Ayoko, G. A. (Godwin A.) | Goonetilleke, Ashantha
Metals deposited on urban road surfaces and incorporated in stormwater runoff are discharged into receiving waters, influencing their quality and can pose human health risks. Effective design of stormwater treatment measures is closely dependent on the in-depth understanding of stormwater pollutant sources and the associated health risks. The study discussed in this paper has linked the sources of metals in stormwater runoff and the accompanying human health risk to rainfall characteristics. The study outcomes confirmed that the metal contributions to stormwater runoff from the primary sources were in the order of sea salt > soil > traffic. Although traffic contributes a relatively lower percentage to wash-off, the human health risks posed by traffic sourced metals were relatively much higher. This implies that traffic sources should receive particular attention in treating stormwater. These outcomes have the potential to contribute to enhancing effective source control measures in order to safeguard natural waterways from polluted road wash-off.
显示更多 [+] 显示较少 [-]Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil 全文
2018
Hockmann, Kerstin | Tandy, Susan | Studer, Björn | Evangelou, Michael W.H. | Schulin, R. (Rainer)
Shooting ranges polluted by antimony (Sb), lead (Pb), copper (Cu) and zinc (Zn) are used for animal grazing, thus pose a risk of contaminants entering the food chain. Many of these sites are subject to waterlogging of poorly drained soils. Using field lysimeter experiments, we compared Sb, Pb, Cu and Zn uptake by four common pasture plant species (Lolium perenne, Trifolium repens, Plantago lanceolata and Rumex obtusifolius) growing on a calcareous shooting range soil under waterlogged and drained conditions. To monitor seasonal trends, the same plants were collected at three times over the growing season. Additionally, variations in soil solution concentrations were monitored at three depths over the experiment. Under reducing conditions, soluble Sb concentrations dropped from ∼50 μg L−1 to ∼10 μg L−1, which was attributed to the reduction of Sb(V) to Sb(III) and the higher retention of the trivalent species by the soil matrix. Shoot Sb concentrations differed by a factor of 60 between plant species, but remained at levels <0.3 μg g−1. Despite the difference in soil solution concentrations between treatments, total Sb accumulation in shoots for plants collected on the waterlogged soil did not change, suggesting that Sb(III) was much more available for plant uptake than Sb(V), as only 10% of the total Sb was present as Sb(III). In contrast to Sb, Pb, Cu and Zn soil solution concentrations remained unaffected by waterlogging, and shoot concentrations were significantly higher in the drained treatment for many plant species. Although showing an increasing trend over the season, shoot metal concentrations generally remained below regulatory values for fodder plants (40 μg g−1 Pb, 150 μg g−1 Zn, 15–35 μg g−1 Cu), indicating a low risk of contaminant transfer into the food chain under both oxic and anoxic conditions for the type of shooting range soil investigated in this study.
显示更多 [+] 显示较少 [-]Chronic radiation exposure modifies temporal dynamics of cytogenetic but not reproductive indicators in Scots pine populations 全文
2018
Geras'kin, Stanislav | Oudalova, Alla | Kuzmenkov, Alexey | Vasiliyev, Denis
Over a period of 13 years (2003–2015), reproductive and cytogenetic effects are investigated in Scots pine populations growing in the Bryansk region of Russia radioactively contaminated as a result of the Chernobyl accident. In reference populations, the frequencies of cytogenetic abnormalities are shown to change with time in a cyclic manner. In chronically exposed populations, the cyclic patterns in temporal dynamics of cytogenetic abnormalities appear to be disturbed. In addition, a tendency to decrease in the frequencies of cytogenetic abnormalities with time as well as an increase in their variability with dose rate is revealed. In contrast, no significant impact of chronic radiation exposure on the time dynamics of reproductive indexes is detected. Finally, long-term observations on chronically exposed Scots pine populations revealed qualitative differences in the temporal dynamics of reproductive and cytogenetic indicators.
显示更多 [+] 显示较少 [-]The energetic physiology of juvenile mussels, Mytilus chilensis (Hupe): The prevalent role of salinity under current and predicted pCO2 scenarios 全文
2018
Duarte, C. | Navarro, J.M. | Quijón, P.A. | Loncon, D. | Torres, R. | Manríquez, P.H. | Lardies, M.A. | Vargas, C.A. | Lagos, N.A.
As a result of human activities, climate forecasts predict changes in the oceans pCO₂ and salinity levels with unknown impacts on marine organisms. As a consequence, an increasing number of studies have begun to address the individual influence of pCO₂ and salinity but much remains to be done to understand their combined effects on the physiology and ecology of marine species. Our study addressed this knowledge gap by measuring the influence of current and predicted levels of pCO₂ (380 and 1200 ppm, respectively) and salinity (20, 25 and 30 psμ) on the energetic physiology of juvenile mussels (Mytilus chilensis) from the south-eastern Pacific region. Our results indicate that a reduced salinity caused a significant reduction in clearance rate, absorption efficiency and scope for growth of this species. Meanwhile, an increase in pCO₂ levels caused a reduction in excretion rates and interacted significantly with salinity in the rate of oxygen uptake measured in the mussel. These results suggest that potential changes in salinity might have a direct role on the physiology of M. chilensis. The effect of pCO₂, although less prevalent among the variables measured here, did interact with salinity and is also likely to alter the physiology of this species. Given the ecological and economic importance of M. chilensis, we call for further studies exploring the influence of pCO₂ across a wider range of salinities.
显示更多 [+] 显示较少 [-]Short-term transcriptome and microRNAs responses to exposure to different air pollutants in two population studies 全文
2018
Espín-Pérez, Almudena | Krauskopf, Julian | Chadeau-Hyam, Marc | van Veldhoven, Karin | Chung, Fan | Cullinan, Paul | Piepers, Jolanda | van Herwijnen, Marcel | Kubesch, Nadine | Carrasco-Turigas, Glòria | Nieuwenhuijsen, Mark | Vineis, Paolo | Kleinjans, Jos C.S. | de Kok, Theo M.C.M.
Diesel vehicle emissions are the major source of genotoxic compounds in ambient air from urban areas. These pollutants are linked to risks of cardiovascular diseases, lung cancer, respiratory infections and adverse neurological effects. Biological events associated with exposure to some air pollutants are widely unknown but applying omics techniques may help to identify the molecular processes that link exposure to disease risk. Most data on health risks are related to long-term exposure, so the aim of this study is to investigate the impact of short-term exposure (two hours) to air pollutants on the blood transcriptome and microRNA expression levels.We analyzed transcriptomics and microRNA expression using microarray technology on blood samples from volunteers participating in studies in London, the Oxford Street cohort, and, in Barcelona, the TAPAS cohort. Personal exposure levels measurements of particulate matter (PM₁₀, PM₂.₅), ultrafine particles (UFPC), nitrogen oxides (NO₂, NO and NOx), black carbon (BC) and carbon oxides (CO and CO₂) were registered for each volunteer. Associations between air pollutant levels and gene/microRNA expression were evaluated using multivariate normal models (MVN).MVN-models identified compound-specific expression of blood cell genes and microRNAs associated with air pollution despite the low exposure levels, the short exposure periods and the relatively small-sized cohorts. Hsa-miR-197-3p, hsa-miR-29a-3p, hsa-miR-15a-5p, hsa-miR-16-5p and hsa-miR-92a-3p are found significantly expressed in association with exposures. These microRNAs target also relevant transcripts, indicating their potential relevance in the research of omics-biomarkers responding to air pollution. Furthermore, these microRNAs are also known to be associated with diseases previously linked to air pollution exposure including several cancers such lung cancer and Alzheimer's disease. In conclusion, we identified in this study promising compound-specific mRNA and microRNA biomarkers after two hours of exposure to low levels of air pollutants during two hours that suggest increased cancer risks.
显示更多 [+] 显示较少 [-]Sources and distribution of microplastics in China's largest inland lake – Qinghai Lake 全文
2018
Xiong, Xiong | Zhang, Kai | Chen, Xianchuan | Shi, Huahong | Luo, Ze | Wu, Chenxi
Microplastic pollution was studied in China's largest inland lake – Qinghai Lake in this work. Microplastics were detected with abundance varies from 0.05 × 10⁵ to 7.58 × 10⁵ items km⁻² in the lake surface water, 0.03 × 10⁵ to 0.31 × 10⁵ items km⁻² in the inflowing rivers, 50 to 1292 items m⁻² in the lakeshore sediment, and 2 to 15 items per individual in the fish samples, respectively. Small microplastics (0.1–0.5 mm) dominated in the lake surface water while large microplastics (1–5 mm) are more abundant in the river samples. Microplastics were predominantly in sheet and fiber shapes in the lake and river water samples but were more diverse in the lakeshore sediment samples. Polymer types of microplastics were mainly polyethylene (PE) and polypropylene (PP) as identified using Raman Spectroscopy. Spatially, microplastic abundance was the highest in the central part of the lake, likely due to the transport of lake current. Based on the higher abundance of microplastics near the tourist access points, plastic wastes from tourism are considered as an important source of microplastics in Qinghai Lake. As an important area for wildlife conservation, better waste management practice should be implemented, and waste disposal and recycling infrastructures should be improved for the protection of Qinghai Lake.
显示更多 [+] 显示较少 [-]