细化搜索
结果 1051-1060 的 7,292
Effect of CaO and montmorillonite additive on heavy metals behavior and environmental risk during sludge combustion 全文
2022
Zhang, Zhenrong | Huang, Yaji | Zhu, Zhicheng | Yu, Mengzhu | Gu, Liqun | Wang, Xinyu | Liu, Yang | Wang, Ruyi
Serious pollution is caused by heavy metals (HMs) emission during sludge combustion treatment, but the addition of minerals has the ability to alleviate the migration of HMs to the gaseous state. In this study, HMs (As, Cr, Zn and Cu) behavior, speciation, and environmental risk during sludge combustion with CaO and montmorillonite (MMT) additive was investigated in the lab-scale tube furnace. The results showed that the sludge combustion was mainly determined by volatile matter. In general, CaO inhibited the volatilization of Cr, Zn, and Cu, but promoted As volatilization. MMT inhibited the volatilization of HMs, but the effect was not obvious at high temperatures. Besides, the improvement of retention effect was not found for Cr and Cu with the increase of CaO at 1000 °C, there might exist threshold value for CaO on HMs retention process. Meanwhile, CaO increased acid-soluble fraction of As significantly at high temperatures, decreased residual fraction of Cr by oxidation, converted Zn and Cu to residual fraction. MMT increased the acid-soluble fraction of As and residual fraction of Cr. In view of the HMs environmental risk in ash, the combustion temperature of sludge was necessary to control under 1000 °C and minerals additive amount was needed to manage above 1000 °C.
显示更多 [+] 显示较少 [-]Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives 全文
2022
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
显示更多 [+] 显示较少 [-]Co-transport and co-release of Eu(III) with bentonite colloids in saturated porous sand columns: Controlling factors and governing mechanisms 全文
2022
Accurate prediction of the colloid-driven transport of radionuclides in porous media is critical for the long-term safety assessment of radioactive waste disposal repository. However, the co-transport and corelease process of radionuclides with colloids have not been well documented, the intrinsic mechanisms for colloids-driven retention/transport of radionuclides are still pending for further discussion. Thus the controlling factors and governing mechanisms of co-transport and co-release behavior of Eu(III) with bentonite colloids (BC) were discussed and quantified by combining laboratory-scale column experiments, colloid filtration theory and advection dispersion equation model. The results showed that the role of colloids in facilitating or retarding the Eu(III) transport in porous media varied with cations concentration, pH, and humic acid (HA). The transport of Eu(III) was facilitated by the dispersed colloids under the low ionic strength and high pH conditions, while was impeded by the aggregated colloids cluster. The enhancement of Eu(III) transport was not monotonically risen with the increase of colloids concentration, the most optimized colloids concentration in facilitating Eu(III) transport was approximately 150 mg L⁻¹. HA showed significant promotion on both Eu(III) and colloid transport because of not only its strong Eu(III) complexion ability but also the increased dispersion of HA-coated colloid particles. The HA and BC displayed a synergistic effect on Eu(III) transport, the co-transport occurred by forming the ternary BC-HA-Eu(III) hybrid. The transport patterns could be simulated well with a two-site model that used the advection dispersion equation by reflecting the blocking effect. The retarded Eu(III) on the stationary phase was released and remobilized by the introduction of colloids, or by a transient reduction in cation concentration. The findings are essential for predicting the geological fate and the migration risk of radionuclides in the repository environment.
显示更多 [+] 显示较少 [-]Extractable additives in microplastics: A hidden threat to soil fauna 全文
2022
Ding, Jing | Liu, Chenxu | Chen, Qifang | Zhang, Zhaoyun | Xiaohan, | Liang, Aiping | Zhu, Dong | Wang, Hongtao | Lv, Min | Chen, Lingxin
Microplastics (MPs) have become an emerging threat for organisms. However, the toxicity mechanisms on biota, especially soil biota remain largely unclear. This study distinguished the effects of five types of MPs and their extractable additives on a typical soil oligochaete Enchytraeus crypticus using a traditional ecotoxicological approach combined with gut microbiota analysis. A variety of inorganic and organic compounds were screened in extractable solutions. Both MPs and their extractable additives decreased the growth and survival rates of the worms and shifted the gut microbiota, and the effects were type-specific. The differences between the effects of MPs and their extractable additives on traditional ecotoxicological parameters were insignificant, suggesting that extractable additives were the main toxicity pathways on soil fauna. The type-specific effects of MPs were attributed to the varied chemical compositions of extractable additives, and the compounds responsible for the shift of gut microbiota were further identified. The distinguishable effects on gut microbiota between MPs and their extractable additives together with the significant regressions between gut microbiota and traditional ecotoxicological parameters confirmed that gut microbiota could be a more sensitive indicator of organism's health conditions. Combined, the study provided an important insight into the toxicity mechanisms of MPs on soil fauna and extractable additives of MPs may be a hidden threat.
显示更多 [+] 显示较少 [-]Man-made natural and regenerated cellulosic fibres greatly outnumber microplastic fibres in the atmosphere 全文
2022
Finnegan, Alexander Matthew David | Süsserott, Rebekah | Gabbott, Sarah E. | Gouramanis, Chris
Atmospheric microplastics have been widely reported in studies around the world. Microfibres are often the dominant morphology found by researchers, although synthetic (i.e., plastic) microfibres are typically just a fraction of the total number of microfibres, with other, non-synthetic, cellulosic microfibres frequently being reported. This study set out to review existing literature to determine the relative proportion of cellulosic and synthetic atmospheric anthropogenic (man-made) microfibres, discuss trends in the microfibre abundances, and outline proposed best-practices for future studies. We conducted a systematic review of the existing literature and identified 33 peer-reviewed articles from Scopus and Google Scholar searches that examined cellulosic microfibres and synthetic microfibres in the atmosphere. Multiple analyses indicate that cellulosic microfibres are considerably more common than synthetic microfibres. FT-IR and Raman spectroscopy data obtained from 24 studies, showed that 57% of microfibres were cellulosic and 23% were synthetic. The remaining were either inorganic, or not determined. In total, 20 studies identified more cellulosic microfibres, compared to 11 studies which identified more synthetic microfibres. The data show that cellulosic microfibres are 2.5 times more abundant between 2016 and 2022, however, the proportion of cellulosic microfibres appear to be decreasing, while synthetic microfibres are increasing. We expect a crossover to happen by 2030, where synthetic microfibres will be dominant in the atmosphere. We propose that future studies on atmospheric anthropogenic microfibres should include information on natural and regenerated cellulosic microfibres, and design studies which are inclusive of cellulosic microfibres during analysis and reporting. This will allow researchers to monitor trends in the composition of atmospheric microfibers and will help address the frequent underestimation of cellulosic microfibre abundance in the atmosphere.
显示更多 [+] 显示较少 [-]Sublethal doses of imidacloprid and pyraclostrobin impair fat body of solitary bee Tetrapedia diversipes (Klug, 1810) 全文
2022
Conceição de Assis, Josimere | Eduardo da Costa Domingues, Caio | Tadei, Rafaela | Inês da Silva, Cláudia | Soares Lima, Hellen Maria | Decio, Pâmela | Silva-Zacarin, Elaine C.M.
Solitary bees present greater species diversity than social bees. However, they are less studied than managed bees, mainly regarding the harmful effects of pesticides present in agroecosystems commonly visited by them. This study aimed to evaluate the effect of residual doses of imidacloprid and pyraclostrobin, alone and in combination, on the fat body (a multifunctional organ) of the neotropical solitary bee Tetrapedia diversipes by means of morphological and histochemical evaluation of oenocytes and trophocytes. Males and females of newly-emerged adults were submitted to bioassays of acute topical exposure. Experimental groups were essayed: control (CTR), solvent control (ACT), imidacloprid (IMI, 0.0028 ng/μL), pyraclostrobin (PYR, 2.7 ng/μL) and imidacloprid + pyraclostrobin (I + P). The data demonstrated that the residual doses applied in T. diversipes adults are sublethal at 96 h. Both oenocytes and trophocytes cells responded to topical exposure to the pesticides, showing morphological changes. In the IMI group, the bee oenocytes showed the greatest proportion of vacuolization and altered nuclei. The pyraclostrobin exposure increased the intensity of PAS-positive labeling (glycogen) in trophocytes. This increase was also observed in the I + P group. Changes in energy reserve (glycogen) of trophocytes indicate a possible mobilization impairment of this neutral polysaccharide to the hemolymph, which can compromise the fitness of exposed individuals. Also, changes in oenocytes can compromise the detoxification function performed by the fat body. This is the first study to show sublethal effects in neotropical solitary bees and highlight the importance of studies with native bees.
显示更多 [+] 显示较少 [-]Plutonium isotopes in the Qinghai-Tibet Plateau: Sources, distribution, and their environmental behaviors 全文
2022
Zhao, Xue | Hou, Xiaolin | Huang, Zhao | Liu, Heng | Jiang, Huan
Due to the high radiotoxicity in high concentrations, plutonium isotopes have drawn high attentions in the consideration of radiation risk, their sources, level, environmental behaviors, including deposition, retention and migration behaviors. However, such research in the Qinghai-Tibet Plateau is still missing, where is deemed as an environmental sensitive area. ²³⁹,²⁴⁰Pu in surface soil collected from the Qinghai-Tibet Plateau were determined for the first time in this work. The concentrations of ²³⁹,²⁴⁰Pu are in the range of 0.0176–1.95 Bq/kg, falling into the reported ranges in the background areas from the similar latitude belt. The ²⁴⁰Pu/²³⁹Pu atomic ratio range was measured to be 0.146–0.225, which is similar with the global fallout values. Both indicate that the global fallout is the major source of plutonium in this region, and the low plutonium level will not cause any radiation risk so far. Based on the statistical analysis of the possible parameters (organic content, moisture content, average annual precipitation, altitudes, topography and human activity), the large variations of ²³⁹,²⁴⁰Pu concentrations were mainly attributed to the retention process related factors including soil organic content and human activity disturbances. While, the deposition related factors including the average annual precipitation, altitudes, topography made insignificant influence on the spatial distribution of ²³⁹,²⁴⁰Pu concentrations due to the low ²³⁹,²⁴⁰Pu concentrations in atmosphere, less wet deposition amount and insignificant re-suspended amount. The highest ²³⁹,²⁴⁰Pu concentrations of 0.805–1.95 Bq/kg were mainly due to the good retention condition in the sampling sites with higher soil organic content and less human activity disturbances.
显示更多 [+] 显示较少 [-]Effect of landfill age on the physical and chemical characteristics of waste plastics/microplastics in a waste landfill sites 全文
2022
The landfills store a lot of waste plastics, thus it has been confirmed a main source for the occurrence of plastics/microplastic. Although there are some reports that microplastics (MPs) can generate in leachate and refuse samples from the landfill, it exist many blanks for the evolution of physical and chemical characteristics of waste plastics and microplastics with different landfill age. To explore the process that large pieces of plastic are fractured into microplastics, the waste plastics with landfill age from 7 to 30 years are surveyed from a typical landfill in Shanghai. The results show that PE and PP are the most common types of landfilling plastics, and their chemical composition also have changed due to the creation of CO and –OH. Moreover, the crystallinity is affected by plastic type and landfill age. The crystallinity of PP increased from 24.9% to 56.8%, but for PE, the crystallinity decreased from 55.6% to 20.8%. The mechanical properties of waste plastics were reduced significantly, which may be caused by changes in carbon-chain molecules. Al, Ti, Co, and other metal elements were detected on the plastic surface. The hydrophobic behavior of waste plastic is constantly decreasing (102.2°–80.1°) under long-term landfilling. By investigating the changes in the physical and chemical characteristics of waste plastics with different landfill age can shed light upon the process of environmental weathering of waste plastics. This provide theoretical guidance for reducing the transport of microplastics to the environment.
显示更多 [+] 显示较少 [-]Ensemble averaging using remote sensing data to model spatiotemporal PM10 concentrations in sparsely monitored South Africa 全文
2022
Arowosegbe, Oluwaseyi Olalekan | Röösli, Martin | Künzli, Nino | Saucy, Apolline | Adebayo-Ojo, Temitope C. | Schwartz, Joel | Kebalepile, Moses | Jeebhay, Mohamed Fareed | Dalvie, Mohamed Aqiel | de Hoogh, Kees
There is a paucity of air quality data in sub-Saharan African countries to inform science driven air quality management and epidemiological studies. We investigated the use of available remote-sensing aerosol optical depth (AOD) data to develop spatially and temporally resolved models to predict daily particulate matter (PM₁₀) concentrations across four provinces of South Africa (Gauteng, Mpumalanga, KwaZulu-Natal and Western Cape) for the year 2016 in a two-staged approach. In stage 1, a Random Forest (RF) model was used to impute Multiangle Implementation of Atmospheric Correction AOD data for days where it was missing. In stage 2, the machine learner algorithms RF, Gradient Boosting and Support Vector Regression were used to model the relationship between ground-monitored PM₁₀ data, AOD and other spatial and temporal predictors. These were subsequently combined in an ensemble model to predict daily PM₁₀ concentrations at 1 km × 1 km spatial resolution across the four provinces. An out-of-bag R² of 0.96 was achieved for the first stage model. The stage 2 cross-validated (CV) ensemble model captured 0.84 variability in ground-monitored PM₁₀ with a spatial CV R² of 0.48 and temporal CV R² of 0.80. The stage 2 model indicated an optimal performance of the daily predictions when aggregated to monthly and annual means. Our results suggest that a combination of remote sensing data, chemical transport model estimates and other spatiotemporal predictors has the potential to improve air quality exposure data in South Africa's major industrial provinces. In particular, the use of a combined ensemble approach was found to be useful for this area with limited availability of air pollution ground monitoring data.
显示更多 [+] 显示较少 [-]Phthalates released from microplastics inhibit microbial metabolic activity and induce different effects on intestinal luminal and mucosal microbiota 全文
2022
Yan, Zehua | Zhang, Shenghu | Zhao, Yonggang | Yu, Wenyi | Zhao, Yanping | Zhang, Yan
The intestine is not only the main accumulation organ of microplastics (MPs), but also the intestinal environment is very conductive to the release of additives in MPs. However, the kinetics of release process, influence factors, and the related effects on gut microbiota remain largely unknown. In this study, a mucosal-simulator of the human intestinal microbial ecosystem (M-SHIME) was used to investigate the influence of gut microbiota on the release of phthalates (PAEs) from MPs and the effects of MPs on the intestinal luminal microbiota and mucosal microbiota. We found that di-(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and dimethyl phthalate (DMP) were the dominant PAEs released in the gut. Gut microbiota accelerated the release of PAEs, with the time to reach the maximum release was shortened from 7 days to 2 days. Moreover, MPs induced differential effects on luminal microbiota and mucosal microbiota. Compared with mucosal microbiota, the luminal microbiota was more susceptible to the leaching of PAEs from MPs, as evidenced by more microbiota alterations. MPs also inhibited the metabolic activity of intestinal flora based on the reduced production of short chain fatty acids (SCFA). These effects were mainly contributed by the release of PAEs. Acidaminococcus and Morganella were simultaneously correlated to the release of PAEs and the inhibition of metabolic activity of intestinal microbiota and can be used as indicators for the intestinal exposure of MPs and additives.
显示更多 [+] 显示较少 [-]