细化搜索
结果 1061-1070 的 1,546
Nitrate and Phosphate Leaching under Turfgrass Fertilized with a Squid-based Organic Fertilizer 全文
2012
Fetter, Joseph C. | Brown, Rebecca N. | Görres, Josef H. | Lee, Chong | Amador, José A.
Consumer demand for cleaned squid generates a substantial amount of waste that must be properly disposed of, creating an economic burden on processors. A potential solution to this problem involves converting squid by-products into an organic fertilizer, for which there is growing demand. Because fertilizer application to lawns can increase the risk of nutrient contamination of groundwater, we quantified leaching of NO3–N and PO4–P from perennial ryegrass turf (Lolium perenne L.) amended with two types of fertilizer: squid-based (SQ) and synthetic (SY). Field plots were established on an Enfield silt loam, and liquid (L) and granular (G) fertilizer formulations of squid and synthetic fertilizers were applied at 0, 48, 146, and 292 kg N ha−1 year−1. Levels of NO3–N and PO4–P in soil pore water from a depth of 60 cm were determined periodically during the growing season in 2008 and 2009. Pore water NO3–N levels were not significantly different among fertilizer type or formulation within an application rate throughout the course of the study. The concentration of NO3–N remained below the maximum contaminant level (MCL) of 10 mg L−1 until midSeptember 2009, when values above the MCL were observed for SQG at all application rates, and for SYL at the high application rate. Annual mass losses of NO3–N were below the estimated inputs (10 kg N ha−1 year−1) from atmospheric deposition except for the SQG and SYL treatments applied at 292 kg N ha−1 year−1, which had losses of 13.2 and 14.9 kg N ha−1 year−1, respectively. Pore water PO4–P levels ranged from 0 to 1.5 mg P L−1 and were not significantly different among fertilizer type or formulation within an application rate. Our results indicate that N and P losses from turf amended with squid-based fertilizer do not differ from those amended with synthetic fertilizers or unfertilized turf. Although organic in nature, squid-based fertilizer does not appear to be more—or less—environmentally benign than synthetic fertilizers.
显示更多 [+] 显示较少 [-]Modeling Adaptive Mutation of Enteric Bacteria in Surface Water Using Agent-Based Methods 全文
2012
Bucci, Vanni | Hoover, Stewart | Hellweger, Ferdi L.
Mechanistic models of enteric bacteria fate and transport in surface waters are important tools for research and management. The existing modeling approach typically assumes that bacteria die in a first-order fashion, but a recent study suggests that bacteria can mutate relatively rapidly to a strain better adapted to the surface water environment. We built an agent-based model that simulates individual wild-type and mutant Escherichia coli cells. The bacteria die, grow on the natural assimilable organic carbon available to E. coli, divide and mutate. We apply the model to laboratory experiments (from the literature and new ones) and the Charles River in Boston. Laboratory applications include decay, growth, and competition (between wild-type and mutant) in various types of surface water. For decay experiments, the stochastic mutation process in the model can produce both first-order and biphasic decay patterns, which is consistent with observations in the literature. For the Charles River, the model can reproduce the main patterns observed in the field data. The model applications provide evidence in support of the mutation mechanism. However, the mutation model does not produce better predictions for the Charles River than a previous model based on labile and resistant subpopulations.
显示更多 [+] 显示较少 [-]Crude Oil-Contaminated Soil Phytoremediation by Using Cyperus brevifolius (Rottb.) Hassk 全文
2012
Basumatary, Budhadev | Bordoloi, Sabitry | Sarma, Hari Prasad
The degradation of total oil and grease (TOG) in crude oil-contaminated soil in the presence of Cyperus brevifolius (Rottb.) Hassk was investigated in a net house study. C. brevifolius plants were transplanted in to spiked soil containing 8% (w/w) crude oil. The capability of plant for enhancing the biodegradation process was tested in pots containing fertilized and unfertilized soil over a 360-day period. Analysis of the degradation of hydrocarbon contaminants, plant growth, and biomass was conducted at 60-day interval. In the presence of contaminants, plant biomass and height were significantly reduced. The specific root surface area was reduced under the effects of crude oil. Concerning TOG content in soil, C. brevifolius could decrease up to 86.2% in TA (crude oil-contaminated soil with fertilizer) and 61.2% in TC (crude oil-contaminated soil without fertilizer). In the unvegetated pots, the reduction of TOG was 13.7% in TB (crude oil-contaminated soil with fertilizer) and 12.5% in TD (crude oil-contaminated soil without fertilizer). However, biodegradation was significantly more in vegetated pots than in unvegetated pots (p = 0.05). The addition of fertilizer had positive effect on TOG degradation in the presence of C. brevifolius compared to the unfertilized treatments. Thus, there was evidence of C. brevifolius enhancing the biodegradation of crude oil in soil under the conditions of this experiment.
显示更多 [+] 显示较少 [-]NH₄-N Removal Through Nitrification and Hydrogenotrophic Denitrification in Simple Attached Growth Reactors 全文
2012
Khanitchaidecha, Wilawan | Shakya, Maneesha | Tatsuru, Kamei | Kazama, Futaba
To provide good quality of drinking water, a biological system to remove ammonium-nitrogen (NH₄-N) from groundwater was studied in this research. The NH₄-N removal system consists of two attached growth reactors: one for nitrification and the other for hydrogenotrophic denitrification (H. denitrification). The nitrification reactor, fed by the NH₄-N contained water, could remove NH₄-N without any need of aeration. The nitrification efficiency was increased by reactor length; the highest efficiency of 92 % was achieved at the longest reactor of 100 cm. A high Fe in groundwater affected the reactor performance by decreasing the efficiency, while a low inorganic carbon (IC) had no effects. Despite of good efficiency in terms of NH₄-N removal, the nitrification reactor increased the concentration of NO₃-N in its effluent. To treat the NO₃-N, a H. denitrification reactor was set up after the nitrification reactor. Efficiency of the H. denitrification reactor was enhanced by increasing H₂ flow rates. The efficiencies were 3, 27, and 90 % for 30, 50, and 70 mL/min of H₂ flow rates, respectively. It was also found that the NO₃-N contained water (water from the nitrification reactor) had to supply IC (i.e., NaHCO₃ or CO₂) for efficient H. denitrification; however, an on-site reactor showed that it can be achieved even without IC addition. The treated water contained low NH₄-N and NO₃-N of <1.5 and <11.3 mg/L, respectively, which comply with drinking water standards. The good performance of the reactors in terms of high efficiency, no aeration need, and low H₂ supply indicated appropriateness of the system for groundwater treatment.
显示更多 [+] 显示较少 [-]Effects of Dissolved Water Constituents on the Photodegradation of Fenitrothion and Diazinon 全文
2012
Ukpebor, Justina E. | Halsall, Crispin J.
The photochemical degradation of two widely used organophosphorothioate insecticides, fenitrothion and diazinon, was investigated in aqueous solutions containing three separate dissolved constituents commonly found in natural waters (NO 3 − , CO 3 2− and dissolved organic matter (DOC)). The effect of these constituents on pesticide photodegradation was compared to degradation in “constituent-free” pure water. Solutions were irradiated in an Atlas solar simulator fitted with a UV-filtered Xenon arc lamp with light irradiances (500 W m−2) measured using a spectral radiometer to allow derivation of quantum yields of degradation. Fenitrothion absorbs light within the solar UV range (λ, 295–400 nm) and underwent direct photolysis in pure water whereas diazinon (λ max ∼250 nm) showed no observable loss over the experimental period. However, photodegradation conforming to pseudo-first-order kinetics was observed for both chemicals in the presence of the dissolved constituents (at concentrations typically observed in natural waters), with the rates of photodecay observed in the order of NO 3 − > CO 3 2− ≅ DOC, with the highest rates observed in the 3 mM NO 3 − solutions (k Fen = 0.155 ± 0.041 h−1; k Dia = 0.084 ± 0.0007 h−1). For diazinon this rate was comparable to fenitrothion photolysis in pure water (k fen 0.072 ± 0.0078 h−1), highlighting the importance of NO 3 − on a non-photolabile pesticide, with indirect photodegradation probably attributable to the light-induced release of aqueous hydroxyl radicals (·OH) from NO 3 − . Suwannee river fulvic acid (serving as DOC) did not statistically affect the rate of photodecay for fenitrothion relative to its photolysis in MilliQ water, although measured rates in DOC solutions were slightly lower. However, measurable rates of photodecay were apparent for diazinon in the DOC solutions, indicating that fulvic acid, possibly in the form of “excited” triplet-state-DOC plays a role in diazinon transformation. Hydrolysis was not apparent for fenitrothion (in buffered solutions of pH 5–9) but was notable for diazinon at the lower pHs of 5 and 3 (k Dia-hyd 0.3414 h−1 at pH 3 and 0.228 h−1 at pH 5), resulting in the formation of the degradate, 2-isopropyl–6-methyl–4-pyrimidinol. This work highlights the importance of dissolved constituents on abiotic photodegradation of pesticides and it is recommended that these constituents be incorporated into laboratory-based fate-testing regimes.
显示更多 [+] 显示较少 [-]Determination of Symmetrical Index for 3H in Precipitation and 137Cs in Ground Level Air 全文
2012
Janković, Marija M. | Todorović, Dragana J.
The paper presents results of a long-term investigations of tritium activity concentrations in precipitation and radiocesium activity concentrations in ground level air in Belgrade, Serbia. Samples were collected at three locations in Belgrade (Meteorological Station of Belgrade MS at Zeleno Brdo (ZB), Meteorological Station MS Usek (USEK), and VinÄa Institute of Nuclear Sciences (VINS)). Presented data cover the period 1985–1997. Significantly higher tritium levels were measured in samples in VINS compared with off-site location, while the impact of research reactor for 137Cs was not detected. It was found that the value of the symmetrical index n is higher for VINS in case of tritium, compared to other locations, which is in accordance with the fact that the highest average monthly concentrations of tritium were obtained in the samples from the cited place. Although the highest value of index n in case of 137Cs was also obtained for VINS, average monthly concentrations of 137Cs in ground level air for this location were the lowest. The 137Cs concentration in the ground level air is described by a kinetic equation of the first order and provides a good description of the time changes in these concentrations.
显示更多 [+] 显示较少 [-]Removal of Uranium(VI), Lead(II) at the Surface of TiO₂ Nanotubes Studied by X-Ray Photoelectron Spectroscopy 全文
2012
Bonato, M. | Ragnarsdottir, K. V. | Allen, G. C.
A thin film of well-ordered anatase TiO₂ nanotubes prepared by anodic oxidation of titanium metal were synthesised and used as adsorbent medium for the purification of water from aqueous uranium and lead. The amount of subtracted metal ions was quantified by using X-ray photoelectron spectroscopy at the surface of the reacted TiO₂ surface. Batch experiments for the sorption of U and Pb at the surface of the titania substrate were carried out in separated solution equilibrated with air of uranyl acetate and lead nitrate, in the pH range 3–9. For uranium, the experiments were also repeated in anoxic (N₂) atmosphere. The amount of metal ions adsorbed onto the titania medium was quantified by measurements of the surface coverage expressed in atomic percent, by recording high-resolution XPS spectra in the Ti2p, U4f and Pb4f photoelectron regions. Adsorption of the uranyl species in air atmosphere as a function of pH showed an adsorption edge near pH 4 with a maximum at pH 7. At higher pH the presence of very stable uranyl–carbonate complexes prevented any further adsorption. Further adsorption increased until pH 8.5 was obtained when the uranyl solution was purged from dissolved CO₂. Lead ion showed a sorption edge at pH 6, with a maximum uptake at pH 8. The results showed that the uptake of uranium and lead on the selected titania medium is remarkably sensitive to the solution pH. This study demonstrates the reliability of this type of material for treating water polluted with heavy metals as well as leachates from radioactive nuclear wastes.
显示更多 [+] 显示较少 [-]Digestive Cecum and Tissue Redistribution in Gills of Telescopium telescopium as Indicators of Ni Bioavailabilities and Contamination in Tropical Intertidal Areas 全文
2012
Yap, C. K. | Noorhaidah, A. | Tan, S. G.
The relationships between the Ni concentrations of the mudflat snails Telescopium telescopium and the surface sediments have not been reported yet from tropical intertidal areas. In this study, telescope snails and surface sediments were collected from 18 geographical sampling sites in intertidal areas of Peninsular Malaysia. The concentrations of Ni were measured in seven different soft tissues of the snails namely foot, cephalic tentacles, mantle, muscle, gill, digestive cecum, and remaining soft tissues. It was found that different concentrations of Ni were found in the different soft tissues, indicating different mechanisms of sequestration and regulation of Ni in these different tissues. By comparing the Ni concentrations in the similar tissues, spatial variations of Ni were found in the different sampling sites although there was no consistent pattern of Ni in these sites. The highest Ni variation based on the ratio of maximum to minimum values indicated that cephalic tentacle and foot were the main organs having high Ni variation. The use of correlation analysis and multiple linear stepwise regression analysis revealed that digestive cecum of T. telescopium could be used to reflect the Ni contamination of the sampling site. Also, the digestive cecum and gill were found to be the main bioaccumulation and storage sites for Ni. From the Ni accumulation patterns in all the populations investigated, tissue redistributions of Ni in gill was identified and could be proposed as an indicator of high Ni bioavailability and contamination in the sampling site. To our knowledge, this is the first and most comprehensive study on Ni accumulation in the different soft tissues of T. telescopium from tropical intertidal areas, in relation to the sediment data.
显示更多 [+] 显示较少 [-]Riparian Shrub Metal Concentrations and Growth in Amended Fluvial Mine Tailings 全文
2012
Meiman, P. J. | Davis, N. R. | Brummer, J. E. | Ippolito, J. A.
Fluvial mine tailing deposition has caused extensive riparian damage throughout the western USA. Willows are often used for fluvial mine tailing revegetation, but some accumulate excessive metal concentrations potentially detrimental to browsers. This greenhouse experiment evaluated growth and metal accumulation of Geyer willow (Salix geyeriana Andersson), Drummond’s willow (Salix drummondiana Barratt ex Hook.), diamondleaf willow (Salix planifolia Pursh), Bebb willow (Salix bebbiana Sarg.), thinleaf alder [Alnus incana (L.) Moench spp. tenuifolia (Nutt.) Breitung], water birch (Betula occidentalis Hook.), red-osier dogwood (Cornus sericea L. spp. sericea), and shrubby cinquefoil [(Dasiphora fruticosa (L.) Rydb. ssp. floribunda (Pursh) Kartesz)]. Bare-root shrubs were grown in tailings collected from three acidic, metal-contaminated (i.e., Cd, Cu, Pb, and Zn) fluvial deposits near Leadville, Colorado, USA. Tailings were amended with only lime to raise the soil pH to 7 s.u., or with lime and composted biosolids (224 Mg ha−1). All shrubs survived in the amended tailings; composted biosolids had little effect on plant biomass. Aboveground and belowground biomass increased during the 2-month greenhouse study by 3–9 and 1.5–5 times initial values, respectively. Most shrubs accumulated Pb and Cu in roots, and belowground Pb concentrations in all shrubs were significantly reduced by the addition of composted biosolids. Compared to other species, alder and cinquefoil accumulated Pb in aboveground growth, and concentrations exceeded animal toxicity thresholds, but these shrubs normally comprise a small proportion of animal diets. Dogwood, alder, and cinquefoil contained low Cd concentrations in aboveground new growth, whereas Bebb and Geyer willow contained zootoxic concentrations. Dogwood, alder, and cinquefoil are three good candidates for mine tailing revegetation, especially in fluvial deposits with elevated Cd concentrations.
显示更多 [+] 显示较少 [-]Environmental Monitoring Using Electrical Resistivity Tomography (ERT) in the Subsoil of Three Former Petrol Stations in SE of Spain 全文
2012
Rosales, Rosa Ma | Martínez-Pagan, Pedro | Faz, Angel | Moreno-Cornejo, Jennifer
Electrical resistivity tomography (2D ERT) is a powerful tool for the diagnosis of the subsoil state and to pursue an environmental monitoring in time to detect and follow a temporal evolution of plumes in hydrocarbon-contaminated soils. In situ, 2D ERT was conducted to investigate the electrical properties of the subsoil in three petrol stations in Murcia semiarid Region (SE Spain), which have been active for many years, in order to look for anomalous areas that could be related to the presence of a non-aqueous phase liquid (NAPL) contaminant plume in the subsoil. A total of 18 ERT profiles in wet and dry season were conducted to study the seasonal effects in the resistivity values of the subsoil. Dipole–dipole array was set up to make the soil diagnosis, achieving a good vertical and lateral resistivity distributions for the sites investigated. Interpretations obtained from ERT pseudo-sections, after a processing and inversion data process with PROSYS II and RES2DINV software, show delimited highly resistive regions above 2,000 Ω·m at 2 m deep related to the underground storage tanks (USTs) position and the filling ports and anomalous resistivity areas where boreholes and further GC–FID determination in soil samples have been done. No significant differences have been found between results obtained in dry and wet seasons. Thus, the geo-electrical non-destructive technique ERT is presented as a tool to delineate the USTs positions and to point out anomaly in the subsoil that could contain NAPL, helping to design sampling strategies, saving cost and time.
显示更多 [+] 显示较少 [-]