细化搜索
结果 1071-1080 的 8,010
Microplastics generated under simulated fire scenarios: Characteristics, antimony leaching, and toxicity 全文
2021
Hu, Lingling | Fu, Juyang | Wang, Shuo | Xiang, Yahui | Pan, Xiangliang
Intentional or incidental thermal changes inevitably occur during the lifecycle of plastics. High temperatures accelerate the aging of plastics and promote their fragmentation to microplastics (MPs). However, there is little information available on the release of MPs after fires. In this study, an atomic force microscope combined with nanoscale infrared analysis was used to demonstrate the physicochemical properties of polypropylene (PP) plastics under simulated fire scenarios. Results showed that the chemical composition and relative stiffness of heat-treated plastic surfaces changed, significantly enhancing the generation of MPs under external forces; over (2.1 ± 0.2) × 10⁵ items/kg abundance of MPs released from PP which were burned at 250 °C in air and trampled by a person. The leaching of antimony (Sb) from MPs in different solutions first increased and then decreased with increasing temperature, reaching a maximum at 250 °C. Higher concentrations of humic acid (10 vs 1 mg/L) caused a greater release of Sb. Furthermore, the tap water leachates of PP burned at 250 °C had the greatest effect on the growth and photosynthetic activity of Microcystis aeruginosa. Our results suggest fires as a potential source of MPs and calls for increased focus on burning plastics in future research.
显示更多 [+] 显示较少 [-]Combining an effect-based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment 全文
2021
Serra-Compte, Albert | Pikkemaat, Mariël G. | Elferink, Alexander | Almeida, David | Diogène, Jorge | Campillo, Juan Antonio | Llorca, Marta | Álvarez-Muñoz, Diana | Barceló, Damià | Rodríguez-Mozaz, Sara
Combining an effect-based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment 全文
2021
Serra-Compte, Albert | Pikkemaat, Mariël G. | Elferink, Alexander | Almeida, David | Diogène, Jorge | Campillo, Juan Antonio | Llorca, Marta | Álvarez-Muñoz, Diana | Barceló, Damià | Rodríguez-Mozaz, Sara
Two different methodologies were combined to evaluate the risks that antibiotics can pose in the environment; i) an effect-based methodology based on microbial growth inhibition and ii) an analytical method based on liquid-chromatography coupled to mass spectrometry (LC-MS). The first approach was adapted and validated for the screening of four antibiotic families, specifically macrolides/β-lactams, quinolones, sulfonamides and tetracyclines. The LC-MS method was applied for the identification and quantification of target antibiotics; then, the obtained results were combined with ecotoxicological data from literature to determine the environmental risk. The two methodologies were used for the analysis of antibiotics in water samples (wastewater, river water and seawater) and biofluids (fish plasma and mollusk hemolymph) in two monitoring campaigns undertaken in the Ebro Delta and Mar Menor Lagoon (both in the Mediterranean coast of Spain). Both approaches highlighted macrolides (azithromycin) and quinolones (ciprofloxacin and ofloxacin) as the main antibiotics in wastewater treatment plant (WWTP) effluents with potential risk for the environment. However, no risk for the aquatic life was identified in the river, lagoon and seawater as antibiotic levels were much lower than those in WWTP effluents. Fish from Ebro River were the organisms presenting the highest antibiotic concentration when compared with bivalves (mussels) from the Mediterranean Sea and gastropods (marine snails) from the Mar Menor Lagoon. The effect-based methodology successfully determined antibiotic risk in wastewater, but its applicability was less clear in environmental waters such as seawater, due to its high detection limits. Improving sample preconcentration could increase the method sensibility. Overall, combination of both methodologies provides comprehensive insights in antibiotic occurrence and risk associated in areas under study.
显示更多 [+] 显示较少 [-]Combining an effect-based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment 全文
2021
Serra-Compte, Albert | Pikkemaat, Mariël G. | Elferink, Alexander | Almeida, David | Diogène, Jorge | Campillo, Juan Antonio | Llorca, Marta | Álvarez-Muñoz, Diana | Barceló, Damià | Rodríguez-Mozaz, Sara | Ministerio de Economía y Competitividad (España) | Barceló, Damià [0000-0002-8873-0491] | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Two different methodologies were combined to evaluate the risks that antibiotics can pose in the environment; i) an effect-based methodology based on microbial growth inhibition and ii) an analytical method based on liquid-chromatography coupled to mass spectrometry (LC-MS). The first approach was adapted and validated for the screening of four antibiotic families, specifically macrolides/β-lactams, quinolones, sulfonamides and tetracyclines. The LC-MS method was applied for the identification and quantification of target antibiotics; then, the obtained results were combined with ecotoxicological data from literature to determine the environmental risk. The two methodologies were used for the analysis of antibiotics in water samples (wastewater, river water and seawater) and biofluids (fish plasma and mollusk hemolymph) in two monitoring campaigns undertaken in the Ebro Delta and Mar Menor Lagoon (both in the Mediterranean coast of Spain). Both approaches highlighted macrolides (azithromycin) and quinolones (ciprofloxacin and ofloxacin) as the main antibiotics in wastewater treatment plant (WWTP) effluents with potential risk for the environment. However, no risk for the aquatic life was identified in the river, lagoon and seawater as antibiotic levels were much lower than those in WWTP effluents. Fish from Ebro River were the organisms presenting the highest antibiotic concentration when compared with bivalves (mussels) from the Mediterranean Sea and gastropods (marine snails) from the Mar Menor Lagoon. The effect-based methodology successfully determined antibiotic risk in wastewater, but its applicability was less clear in environmental waters such as seawater, due to its high detection limits. Improving sample preconcentration could increase the method sensibility. Overall, combination of both methodologies provides comprehensive insights in antibiotic occurrence and risk associated in areas under study. | This work has received funding from the Spanish Ministry of Economy and Competitiveness through the PLAS-MED (CTM2017-89701-C3-2-R) project. Authors acknowledge the support from the Economy and Knowledge Department of the Catalan Government through Consolidated Research Group (ICRA-ENV 2017 SGR 1124 and 2017-SGR-1404-Water and Soil Quality Unit). The authors acknowledge the IEO & CSIC staff for their help in the sampling campaigns. Albert Serra-Compte acknowledges the FI-DGR research fellowship from the Catalan Government (2018FI_B2_00170) and the Nereus Cost Action grant. Sara Rodriguez-Mozaz acknowledges the Ramon y Cajal program (RYC-2014-16707) and Diana Álvarez-Muñoz the support of the project XENOMETABOLOMIC (CTM2015-73179-JIN) (AEI/FEDER/UE). Authors kindly acknowledge Generalitat DGPAM (Fisheries Department). The authors also acknowledge support from CERCA Programme/Generalitat de Catalunya. | Peer reviewed
显示更多 [+] 显示较少 [-]Dispersal and transport of microplastics in river sediments 全文
2021
He, Beibei | Smith, Mitchell | Egodawatta, Prasanna | Ayoko, G. A. (Godwin A.) | Rintoul, Llew | Goonetilleke, Ashantha
Rivers are viewed as major pathways of microplastic transport from terrestrial areas to marine ecosystems. However, there is paucity of knowledge on the dispersal pattern and transport of microplastics in river sediments. In this study, a three dimensional hydrodynamic and particle transport modelling framework was created to investigate the dispersal and transport processes of microplastic particles commonly present in the environment, namely, polyethylene (PE), polypropylene (PP), polyamide (PA), and polyethylene terephthalate (PET) in river sediments. The study outcomes confirmed that sedimental microplastics with lower density would have higher mobility. PE and PP are likely to be transported for a relatively longer distance, while PA and PET would likely accumulate close to source points. High water flow would transport more microplastics from source points, and high flow velocity in bottom water layer are suggested to facilitate the transport of sedimental microplastics. Considering the limited dispersal and transport, the study outcomes indicated that river sediments would act as a sink for microplastic pollutants instead of being a transport pathway. The patchiness associated with the hotspots of different plastic types is expected to provide valuable information for microplastic source tracking.
显示更多 [+] 显示较少 [-]Ecotoxicological assessment of suspended solids: The importance of biofilm and particle aggregation 全文
2021
Motiei, Asa | Ogonowski, Martin | Reichelt, Sophia | Gorokhova, Elena
Assessment of microplastic impacts in biota is challenging due to the complex behavior of the test particles and their interactions with other particulates, including microorganisms, in the environment. To disentangle responses to microplastic exposure from those to other suspended solids, both microplastic and natural particles must be present in the test system. We evaluated how microplastic, non-plastic particles, and biofilms interacted in their effects on survivorship using acute toxicity assay with Daphnia magna. The animals were exposed to microplastic and kaolin at different concentrations of suspended solids (SS; 10, 100, and 1000 mg/L) with a varying microplastic contribution (%MP; 0–80%) and biofilm (presence/absence) associated with the solids. Also, we examined how these exposure parameters (SS, %MP, and Biofilm) affected aggregate formation that was analyzed using particle size distribution data. Under the exposure conditions, Daphnia mortality was primarily driven by SS concentration but ameliorated by both microplastic and biofilm. The ameliorating effects were related to increased particle aggregation in the presence of biofilm and high %MP. In addition, a weak yet significant positive effect of the biofilm on the survivorship was observed, presumably, due to microbial food supply to the daphniids in the exposure system; the bacteria were utilized at the absence of other food. Therefore, the effects of both natural and anthropogenic particulates depend on the particle behavior and aggregation in the water governed by microbial communities and physicochemical properties of the particles, which must be taken into account in the hazard assessment of plastic litter.
显示更多 [+] 显示较少 [-]Organic contaminants of emerging concern in leachate of historic municipal landfills 全文
2021
Propp, Victoria R. | De Silva, Amila O. | Spencer, Christine | Brown, Susan J. | Catingan, Sara D. | Smith, James E. | Roy, James W.
Many types of contaminants of emerging concern (CECs), including per- and poly-fluoroalkyl substances (PFAS), have been found in leachate of operating municipal landfills. However, there is only limited information on CECs presence in leachate of historic landfills (≥3 decades since closure, often lacking engineered liners or leachate collection systems) at concentrations that may pose a risk to nearby wells and surface water ecosystems. In this study, 48 samples of leachate-impacted groundwater were collected from 20 historic landfills in Ontario, Canada. The CECs measured included artificial sweeteners (ASs), PFAS, organophosphate esters (OPE), pharmaceuticals, bisphenols, sulfamic acid, perchlorate, and substituted phenols. The common presence of the AS saccharin, a known indicator of old landfill leachate, combined with mostly negligible levels of the AS acesulfame, an indicator of modern wastewater, revealed that most samples were strongly influenced by leachate and not cross-contaminated by wastewater (which can contain these same CECs). Several landfills, including ones closed in the 1960s, had total PFAS concentrations similar to those previously measured at modern landfills, with a maximum observed here of 12.7 μg/L. Notably elevated concentrations of several OPE, sulfamic acid, cotinine, and bisphenols A and S were found at many 30-60 year-old landfills. There was little indication of declining concentrations with landfill age, suggesting historic landfills can be long-term sources of CECs to groundwater and that certain CECs may be useful tracers for historic landfill leachate. These findings provide guidance on which CECs may require monitoring at historic landfill sites and wastewater treatment plants receiving their effluent.
显示更多 [+] 显示较少 [-]In-use emissions and usage trend of pellet heating stoves in rural Yangxin, Shandong Province 全文
2021
Shrestha, Prabin | Zhang, Wenting | Mawusi, Sylvester K. | Li, Jie | Xu, Jiangdong | Li, Chuang | Xue, Chunyu | Liu, Guangqing
The use of coal in Chinese households for winter heating emits harmful pollutants that severely affect indoor air quality and climate. Therefore, China has made efforts to transition into clean heating using improved heating stoves and biomass pellets. Although the economic and policy implications of such demonstration projects have been extensively investigated, little has been done to understand the real-world performance and adoption trends of such stoves. This study measured in-use emissions from nine different pellet stoves used for heating among 52 rural households in Yangxin, Shandong Province. The temperature of the stove chimney of 21 households was monitored and 56 households were surveyed to explore the stove use trend. The particulate and gaseous emission concentrations for most of the stoves exceeded the limits specified in the Chinese national standard. The measured fuel energy-based emission factors (mean ± standard deviation) for CO₂, CO, NOx, and PM₂.₅ were 103 ± 3, 1.41 ± 1.19, 0.336 ± 0.237, and 0.146 ± 0.108 g/MJ, respectively. Between January to February, the average daily heating duration was 8.71 h, and the sustained use of heating stoves was seen among over 85% of the households. On average, the households used their heating stoves for 3.28 months and the estimated annual pellets consumption for a household was 2.7 tons. Besides inherent variabilities associated with user habits, the stove’s design-related shortcomings and low-grade pellets hindered the performance and effectiveness of pellet stoves. This study provides insights into opportunities and challenges for the promotion of cleaner fuels and heating technologies. Furthermore, it will provide information on emissions from rural residential sources to build the emission inventory and inform policymaking for successful stove promotion programs.
显示更多 [+] 显示较少 [-]Glyphosate-induced lipid metabolism disorder contributes to hepatotoxicity in juvenile common carp 全文
2021
Liu, Jingbo | Dong, Chenyu | Zhai, Zhenzhen | Tang, Liang | Wang, Lin
Residues of glyphosate (GLY) are widely detected in aquatic systems, raising potential environmental threats and public health concerns, but the mechanism underlying GLY-induced hepatotoxicity in fish has not been fully elucidated yet. This study was designed to explore the hepatotoxic mechanism using juvenile common carp exposed to GLY for 45 d, and plasma and liver samples were collected at 15 d, 30 d, and 45 d to analyze the assays. First, GLY-induced hepatic damage was confirmed by serum liver damage biomarker and hepatic histopathological analysis. Next, changes in oxidative stress biomarkers, gene expression levels of pro- and anti-inflammatory cytokines, and lipid metabolism-related parameters in collected samples were analyzed to clarify their roles in GLY-induced hepatic damage. Data showed that oxidative stress was an early event during GLY exposure, followed by hepatic inflammatory response. Lipid metabolism disorder was a late event during GLY exposure, as evidenced by overproduced hepatic free fatty acids, enhanced lipogenesis-related gene expression levels, reduced lipolysis-related gene expression levels, and resultant hepatic lipid accumulation. Collectively, these findings demonstrate that GLY induces hepatotoxicity in fish through involvement of oxidative stress, inflammatory response, and lipid metabolism disorder, which are intimately interrelated with each other during GLY exposure.
显示更多 [+] 显示较少 [-]Contribution of South Asian biomass burning to black carbon over the Tibetan Plateau and its climatic impact 全文
2021
Yang, Junhua | Ji, Zhenming | Kang, Shichang | Tripathee, Lekhendra
This study used a regional climate-chemistry transport model, WRF-Chem v3.9.1, to evaluate the impact of South Asian biomass burning on black carbon (BC) over the Tibetan Plateau (TP) and its climatic effects for an entire year. The simulation, which was validated by comparing surface meteorological parameters and BC concentration against in-situ observations over South Asia and the TP, provided a perspective on the seasonal variations and regional spatial patterns of BC concentration. Using a sensitivity simulation where BC emissions from biomass burning were removed from South Asia, this study found South Asian biomass burning emissions contributed up to 90% of BC mass over the TP during the pre-monsoon season, specifically emissions from western India for the simulated year. The emissions led to reduced surface radiative forcing, causing the temperature to decrease accordingly. However, column cloud water was increased. This study suggested that the biomass burning emissions from South Asia have significant impact on atmospheric BC over the TP, especially during the pre-monsoon season. Therefore, reducing biomass burning emissions from South Asia is potentially important for alleviating the effects of BC on climatic and environmental conditions over the TP and surrounding regions.
显示更多 [+] 显示较少 [-]Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau 全文
2021
Xiao, Jun | Wang, Lingqing | Chai, Ningpan | Liu, Ting | Jin, Zhangdong | Rinklebe, Jörg
Groundwater is essential for regional ecological-economic system and is an important resource of drinking water, especially in the Chinese Loess Plateau (CLP), where is a typical water-limited ecosystem. Groundwater quality deterioration will affect water security and exacerbate the water shortages. Groundwater hydrochemistry, pollution source apportionment, quality and health risks were evaluated based on analysis of major ions and selected trace elements in seasonal samples of the Fen River Basin (FRB) in the eastern CLP. Groundwaters in the FRB were mainly HCO₃⁻-Ca²⁺-Na⁺ water type with low dissolved solutes in upstream samples, high values in midstream samples and medium values in downstream samples. Solutes in upstream samples were mainly derived from carbonate weathering, while those in midstream and downstream samples came from silicate weathering, evaporites dissolution and anthropogenic sources. Self-organizing map (SOM) showed the hydrochemistry remained unchanged from dry to wet season for most sampling points. The seasonal variations of Ag, Cd, Ni, Pb, and Tl were significant due to anthropogenic input. High NO₃⁻ in upstream and downstream samples resulted primarily from sewage discharge, and high SO₄²⁻ in midstream and downstream samples was from gypsum- and coal-related industries. In addition, anthropogenic input related to coal industries significantly aggravates pollution of As, Ni, Ag, Fe, and Mn. Influenced by evaporites and anthropogenic input, midstream samples had high salinity, total hardness and water quality indices (WQIs) and were unsuitable for irrigation or drinking purposes. Seasonal variation of WQI in the FRB was unsignificant except Jiaokou River sub-basin, where groundwater quality was worse in the wet season than the dry season due to coal mining. Great attention should be paid to the high non-carcinogenic risks of exposure to F, V, Mn, and Cr via dermal absorption, particularly for children. Overall, groundwater quality in the FRB was best in upstream, medium in midstream and worst in midstream based on different index. Groundwater quality is deteriorated by anthropogenic input and the sewage discharge in the FRB should be strictly controlled. Our report provides a reference for groundwater pollution evaluation and source identification in similar areas.
显示更多 [+] 显示较少 [-]Mitigating NOX emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei, China 全文
2021
Li, Xia | Bei, Naifang | Hu, Bo | Wu, Jiarui | Pan, Yuepeng | Wen, Tianxue | Liu, Zirui | Liu, Lang | Wang, Ruonan | Li, Guohui
Stringent mitigation measures have reduced wintertime fine particulate matter (PM₂.₅) concentrations by 42.2% from 2013 to 2018 in the Beijing-Tianjin-Hebei (BTH) region, but severe PM pollution still frequently engulfs the region. The observed nitrate aerosols have not exhibited a significant decreasing trend and constituted a major fraction (about 20%) of the total PM₂.₅, although the surface-measured NO₂ concentration has decreased by over 20%. The contributions of nitrogen oxides (NOX) emissions mitigation to the nitrate and PM₂.₅ concentrations and how to alleviate nitrate aerosols efficiently under the current situation still remains elusive. The WRF-Chem model simulations of a persistent and heavy PM pollution episode in January 2019 in the BTH reveal that NOX emissions mitigation does not help lower wintertime nitrate and PM₂.₅ concentrations under current conditions in the BTH. A 50% reduction in NOX emissions only decreases nitrate mass by 10.3% but increases PM₂.₅ concentrations by 3.2%, because the substantial O₃ increase induced by NOX mitigation offsets the HNO₃ loss and enhances sulfate and secondary organic aerosols formation. Our results are further consolidated by the occurrence of severe PM pollution in the BTH during the COVID-19 outbreak, with a significant reduction in NO₂ concentration. Mitigation of NH₃ emissions constitutes the priority measure to effectively lower the nitrate and PM₂.₅ concentrations in the BTH under current conditions, with 35.5% and 12.7% decrease, respectively, when NH₃ emissions are reduced by 50%.
显示更多 [+] 显示较少 [-]