细化搜索
结果 1071-1080 的 7,351
Enhanced oxidation and stabilization of arsenic in a soil-rice system by phytosynthesized iron oxide nanomaterials: Mechanistic differences under flooding and draining conditions 全文
2022
Lin, Jiajiang | Wu, Weiqin | Khan, Nasreen Islam | Owens, Gary | Chen, Zuliang
Despite arsenic (As) bioavailability being highly correlated with water status and the presence of iron (Fe) minerals, limited information is currently available on how externally applied Fe nanomaterials in soil-rice systems affect As oxidation and stabilization during flooding and draining events. Herein, the stabilization of As in a paddy soil by a phytosynthesized iron oxide nanomaterials (PION) and the related mechanism was investigated using a combination of chemical extraction and functional microbe analysis in soil at both flooding (60 d) and draining (120 d) stages. The application of PION decreased both specifically bound and non-specifically bound As. The As content in rice root, stem, husk and grain was reduced by 78.5, 17.3, 8.4 and 34.4%, respectively, whereas As(III) and As(V) in root declined by 96.9 and 33.3% for the 1% PION treatment after 120 d. Furthermore, the 1% PION treatment decreased the ratio of As(III)/As(V) in the rhizosphere soil, root and stem. Although PION had no significant effect on the overall Shannon index, the distribution of some specific functional microbes changed dramatically. While no As(III) oxidation bacteria were found at 60 d in any treatments, PION treatment increased As(III) oxidation bacteria by 3–9 fold after 120 d cultivation. Structural equation model analysis revealed that the ratio of Fe(III)/Fe(II) affected As stabilization directly at the flooding stage, whereas nitrate reduction and As(III) oxidation microbial groups played a significant role in the stabilization of As at the draining stage. These results highlight that PION exhibits a robust ability to reduce As availability to rice, with chemical oxidation, reduction inhibition and adsorption dominating at the flooding stage, while microbial oxidation, adsorption and coprecipitation dominant during draining.
显示更多 [+] 显示较少 [-]A selective hydrometallurgical method for scandium recovery from a real red mud leachate: A comparative study 全文
2022
Salman, Ali Dawood | Juzsakova, Tatjána | Jalhoom, Moayyed G. | Abdullah, Thamer Adnan | Le, Phuoc-Cuong | Viktor, Sebestyen | Domokos, Endre | Nguyen, X Cuong | La, D Duong | Nadda, Ashok K. | Nguyen, D Duc
The aim of this study was to recover Sc as the main product and Fe as a by-product from Hungarian bauxite residue/red mud (RM) waste material by solvent extraction (SX). Moreover, a new technique was developed for the selective separation of Sc and Fe from real RM leachates. The presence of high Fe content (∼38%) in RM makes it difficult to recover Sc because of the similarity of their physicochemical properties. Pyrometallurgical and hydrometallurgical methods were applied to remove the Fe prior to SX. Two protocols based on organophosphorus compounds (OPCs) were proposed, and the main extractants were evaluated: bis(2-ethylhexyl) phosphoric acid (D2EHPA/P204) and tributyl phosphate (TBP). The results showed that SX using diethyl ether and tri-n-octylamine (N₂₃₅) was efficient in extracting Fe(III) from the HCl leachate as HFeC1₄. Over 97% of Sc was extracted by D2EHPA extractant under the following conditions; 0.05 mol/L of D2EHPA concentration, A/O phase ratio of 3:1, pH 0–1, 10 min of shaking time, and a temperature of 25 °C. Sc(OH)₃ as a precipitate was efficiently obtained by stripping from the D2EHPA organic phase by 2.5 mol/L of NaOH with a stripping efficiency of 95%. In the TBP system, 99% of Sc was extracted under the following conditions: 12.5% vol of TBP, an A/O phase ratio of 3:1, 10 min of shaking time, and a temperature of 25 °C. The Sc contained in the TBP organic phase could be efficiently stripped by 1 mol/L of HCl with a stripping efficiency of 92.85%.
显示更多 [+] 显示较少 [-]Geochemical records of Lake Erhai (South-Western China) reveal the anthropogenically-induced intensification of hypolimnetic anoxia in monomictic lakes 全文
2022
Zhang, Yongdong | Fu, Huan | Liao, Hanliang | Chen, Huihui | Liu, Zhengwen
In monomictic lakes, hypolimnetic anoxia is becoming severe in extent and duration over the past few decades. Understanding historical trends in hypolimnetic dissolved oxygen (DO) levels and the factors controlling them is crucial for effective protection and management of monomictic lakes everywhere, but the issue remains little studied in China. Here, our study elucidated the variation of hypolimnion DO and organic matter (OM) input in Lake Erhai (a typical monomictic lake in South-Western China) during the past 200 years, by using the geochemical profiles of elements (C, N, P, S, Mo, Ca, and Al) and aliphatic hydrocarbons in a dated sediment core. The values of element proxies (S concentrations, S/Al ratios, Mo enrichment factor, and total organic carbon/total P ratios) and pristane/phytane (Pr/Ph) ratios reflect relatively limited development of anoxia in the lake hypolimnion before 1990. Meanwhile, the n-alkane proxies (short-chain, middle-chain, and long-chain n-alkane abundances, n-C₁₇/n-C₁₆ alkane ratios, and Paq) indicate relatively scant inputs of OM from phytoplankton and relatively high inputs of OM from terrestrial plants or from submerged macrophytes. Taken together the results show that OM supplied in this period did not deteriorate hypolimnion DO in Lake Erhai. The element proxies and Pr/Ph ratios point to that the lake had experienced a pronounced intensification of hypolimnetic anoxia after 1990, and the n-alkane proxies indicate that the lake was susceptible to severe eutrophication and phytoplankton blooms in this period. The synchronous sharp variation implies the decay of massive phytoplankton OM had severely consumed oxygen in the lake hypolimnion. The large surface area/depth ratio in Lake Erhai is conducive for an overturn of the water column during wind disturbance, which allowed the water column stratification and relating effects (e.g., hypolimnetic anoxia) less vulnerable to some aspects of climate change.
显示更多 [+] 显示较少 [-]Treatment technologies for selenium contaminated water: A critical review 全文
2022
Li, Tianxiao | Xu, Hongxia | Zhang, Yuxuan | Zhang, Hanshuo | Hu, Xin | Sun, Yuanyuan | Gu, Xueyuan | Luo, Jun | Zhou, Dongmei | Gao, Bin
Selenium is an indispensable trace element for humans and other organisms; however, excessive selenium in water can jeopardize the aquatic environment. Investigations on the biogeochemical cycle of selenium have shown that anthropogenic activities such as mining, refinery, and coal combustion mainly contribute to aquatic selenium pollution, imposing tremendous risks on ecosystems and human beings. Various technologies thus have been developed recently to treat selenium contaminated water to reduce its environmental impacts. This work provides a critical review on the applications, characteristics, and latest developments of current treatment technologies for selenium polluted water. It first outlines the present status of the characteristics, sources, and toxicity of selenium in water. Selenium treatment technologies are then classified into three categories: 1) physicochemical separation including membrane filtration, adsorption, coagulation/precipitation, 2) redox decontamination including chemical reduction and catalysis, and 3) biological transformation including microbial treatment and constructed wetland. Details of these methods including their overall efficiencies, applicability, advantages and drawbacks, and latest developments are systematically analyzed and compared. Although all these methods are promising in treating selenium in water, further studies are still needed to develop sustainable strategies based on existing and new technologies. Perspectives on future research directions are laid out at the end.
显示更多 [+] 显示较少 [-]Novel delipidated chicken feather waste-derived carbon-based molybdenum oxide nanocomposite as efficient electrocatalyst for rapid detection of hydroquinone and catechol in environmental waters 全文
2022
Ganesan, Sivarasan | Sivam, Sadha | Elancheziyan, Mari | Senthilkumar, Sellappan | Ramakrishan, Sankar Ganesh | Soundappan, Thiagarajan | Ponnusamy, Vinoth Kumar
Chicken poultry industry produces a vast amount of feather waste and is often disposed into landfills, creating environmental pollution. Therefore, we explored the valorization of chicken feather waste into lipids and keratinous sludge biomass. This study demonstrates the successful utilization of keratinous sludge biomass as a unique precursor for the facile preparation of novel keratinous sludge biomass-derived carbon-based molybdenum oxide (KSC@MoO₃) nanocomposite material using two-step (hydrothermal and co-pyrolysis) processes. The surface morphology and electrochemical properties of as-prepared nanocomposite material were analyzed using HR-SEM, XRD, XPS, and cyclic voltammetric techniques. KSC@MoO₃ nanocomposite exhibited prominent electrocatalytic behavior to simultaneously determine hydroquinone (HQ) and catechol (CC) in environmental waters. The as-prepared electrochemical sensor showed excellent performance towards the detection of HQ and CC with broad concentration ranges between 0.5–176.5 μM (HQ and CC), and the detection limits achieved were 0.063 μM (HQ) and 0.059 μM (CC). Furthermore, the developed modified electrode has exhibited excellent stability and reproducibility and was also applied to analyze HQ and CC in environmental water samples. Results revealed that chicken feather waste valorization could result in sustainable biomass conversion into a high-value nanomaterial to develop a cost-effective electrochemical environmental monitoring sensor and lipids for biofuel.
显示更多 [+] 显示较少 [-]Nano agrochemical zinc oxide influences microbial activity, carbon, and nitrogen cycling of applied manures in the soil-plant system 全文
2022
Shah, Ghulam Mustafa | Ali, Hifsa | Ahmad, Iftikhar | Kāmrān, Muḥammad | Hammad, Mohkum | Shah, Ghulam Abbas | Bakhat, Hafiz Faiq | Waqar, Atika | Guo, Jianbin | Dong, Renjie | Rashid, Muhammad Imtiaz
The widespread use of nano-enabled agrochemicals in agriculture for remediating soil and improving nutrient use efficiency of organic and chemical fertilizers is increasing continuously with limited understanding on their potential risks. Recent studies suggested that nanoparticles (NPs) are harmful to soil organisms and their stimulated nutrient cycling in agriculture. However, their toxic effects under natural input farming systems are just at its infancy. Here, we aimed to examine the harmful effects of nano-agrochemical zinc oxide (ZnONPs) to poultry (PM) and farmyard manure (FYM) C and N cycling in soil-plant systems. These manures enhanced microbial counts, CO₂ emission, N mineralization, spinach yield and N recovery than control (unfertilized). Soil applied ZnONPs increased labile Zn in microbial biomass, conferring its consumption and thereby reduced the colony-forming bacterial and fungal units. Such effects resulted in decreasing CO₂ emitted from PM and FYM by 39 and 43%, respectively. Further, mineralization of organic N was reduced from FYM by 32%, and PM by 26%. This process has considerably decreased the soil mineral N content from both manure types and thereby spinach yield and plant N recoveries. In the ZnONPs amended soil, only about 23% of the applied total N from FYM and 31% from PM was ended up in plants, whereas the respective fractions in the absence of ZnONPs were 33 and 53%. Hence, toxicity of ZnONPs should be taken into account when recommending its use in agriculture for enhancing nutrient utilization efficiency of fertilizers or soil remediation purposes.
显示更多 [+] 显示较少 [-]Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives 全文
2022
Gong, Yishu | Wang, Yin | Lin, Naipeng | Wang, Ruotong | Wang, Meidan | Zhang, Xiaodong
The existence of heavy metals and emerging organic contaminants in wastewater produces serious toxic residues to the environment. Developing cheap and efficient materials to remove these persistent pollutants is crucial. Iron-based materials are cost-effective and environmentally friendly catalysts, and their applications in the environmental field deserve attention. This paper critically reviewed the removal mechanisms of heavy metals and emerging organic pollutants by different influencing factors. The removal of pollutants (heavy metals and emerging organic pollutants) in a multi-component system was analyzed in detail. The mechanisms of synergism, antagonism and non-interference were discussed. This paper had a certain reference value for the research of wastewater remediation technology which could simultaneously remove various pollutants by iron-based materials.
显示更多 [+] 显示较少 [-]Marine shrimps as biomonitors of the Fundão (Brazil) mine dam disaster: A multi-biomarker approach 全文
2022
Maraschi, Anieli C. | Marques, Joseane A. | Costa, Simone R. | Vieira, Carlos E.D. | Geihs, Márcio A. | Costa, Patrícia G. | Martins, Camila de M.G. | Sandrini, Juliana Z. | Bianchini, Adalto | Souza, Marta M.
The disruption of the Fundão dam released 43 million m³ of mine tailings into the Doce River until it flowed into the ocean through the estuary. The mine tailing changed the composition of metals in water and sediment, creating a challenging scenario for the local biota. We used multivariate analyzes and the integrated biomarker response index (IBR) to assess the impact of mine tailings on the bioaccumulation profile (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) as well as the biomarkers response in gills, hepatopancreas and muscle of shrimps sampled from different sectors during two dry seasons (dry1 and dry2) (Sep/Oct 2018; 2019) and two wet seasons (wet1 and wet2) (Jan/feb 2019; 2020). There was seasonal and local effect under bioaccumulation and biomarker response revealing that the pattern responses seen in each sector sampled changed according to the season. The greater IBR added to the strong association among the most metals tissue content (Cd, Cr, Cu and Mn) and sectors sampled during dry 1 suggests greater bioavailability of these metals to the environment in this period. Estuarine sectors stand out for high Fe bioavailability, especially during wet1, which seems to be associated with greater metallothionein content in hepatopancreas of shrimps. Native species of marine shrimps proved to be successful indicators of sediment quality besides being sensitive to water contamination by metals. The multi-biomarkers approach added to multivariate analysis supports the temporal and seasonal effects, signalizing the importance of continuous monitoring of the estuarine region to better know about the bioavailability of these metals, mainly Fe, and their long-term effects on the local biota.
显示更多 [+] 显示较少 [-]The role of dietary factors on blood lead concentration in children and adolescents - Results from the nationally representative German Environmental Survey 2014–2017 (GerES V) 全文
2022
Hahn, Domenica | Vogel, Nina | Höra, Christian | Kämpfe, Alexander | Schmied-Tobies, Maria | Göen, Thomas | Greiner, Annette | Aigner, Annette | Kolossa-Gehring, Marike
In industrialized nations, human lead exposure has decreased significantly in recent decades. Nevertheless, due to its toxic effects, this heavy metal remains a public health concern with children and adolescents being particularly at risk. In Europe nowadays, oral intake via food and drinking water is the predominant exposure pathway for lead. The objective of the present study was to investigate the association between dietary factors and blood lead (PbB) level of 3- to 17-year-old children and adolescents living in Germany, using data from the fifth German Environmental Health Survey (GerES V) and the Child and Adolescent Health Survey (KiGGS Wave 2). GerES V and KiGGS Wave 2 are two national population-representative studies conducted between 2014 and 2017, including measurement of lead concentrations in blood from 720 children and adolescents aged 3–17 years (mean age = 10.21, SD age = 4.36). Using multiple linear regression, sociodemographic and environmental characteristics as well as dietary factors could be identified as significant exposure determinants of PbB concentrations. Lead intake via domestic tap water was the strongest predictor of elevated PbB levels with 27.6% (p-value< .001) higher concentrations of highest compared to none lead intake via tap water. Other foods which were found to be relevant to PbB levels were meat, fruit, and fruit juice. While meat or fruit consumption were each associated with about 13% (p-value < .05) lower PbB levels, fruit juice drinking was associated with up to 12.2% (p-value = .04) higher PbB levels. In conclusion, results indicate the importance of dietary habits for lead exposure in children and adolescents. To protect vulnerable groups, it is recommended that future research and lead-reducing measures pay more attention to dietary links.
显示更多 [+] 显示较少 [-]Synergistic effects of Cd-loving Bacillus sp. N3 and iron oxides on immobilizing Cd and reducing wheat uptake of Cd 全文
2022
Han, Hui | Wu, Xuejiao | Hui, Ruiqing | Xia, Xing | Chen, Zhaojin | Yao, Lunguang | Yang, Jianjun
Iron oxides and microorganisms are important soil components that profoundly affect the transformation and bioavailability of heavy metals in soils. Here, batch and pot experiments were conducted to investigate the immobilization mechanisms of Cd by Cd-loving Bacillus sp. N3 and ferrihydrite (Fh) as well as their impacts on Cd uptake by wheat and bacterial community composition in wheat rhizospheric soil. The results showed that the combination of strain N3 with Fh could immobilize more Cd compared to strain N3 and Fh, respectively. Furthermore, strain N3 facilitated Cd retention on Fh, which synergistically reduced the concentration of DTPA extracted Cd in the soil and decreased Cd content (57.1%) in wheat grains. Moreover, inoculation with strain N3 increased the complexity of the co-occurrence network of the bacterial community in rhizospheric soil, and the abundance of beneficial bacteria with multipel functions including heavy metal immobilization, dissimilatory iron reduction, and plant growth promotion. Overall, this study demonstrated the enrichment of strain N3 and iron oxides, together with increased soil pH, synergistically immobilized soil Cd, which strongly suggested inoculation with Cd-loving strains could be a promising approach to immobilize Cd and reduce wheat uptake of Cd, particular for soils rich in iron oxides.
显示更多 [+] 显示较少 [-]