细化搜索
结果 1091-1100 的 8,010
Associations between ambient fine particulate matter and child respiratory infection: The role of particulate matter source composition in Dhaka, Bangladesh 全文
2021
Sherris, Allison R. | Begum, Bilkis A. | Baiocchi, Michael | Goswami, Doli | Hopke, Philip K. | Brooks, W Abdullah | Luby, Stephen P.
Air pollution in the form of fine particulate matter (PM₂.₅) has been linked to adverse respiratory outcomes in children. However, the magnitude of this association in South Asia and sources of PM₂.₅ that drive adverse health effects are largely unknown. This study evaluates associations between short-term variation in ambient PM₂.₅ and incidence of pneumonia and upper respiratory infections among children in Dhaka, Bangladesh. We also perform an exploratory analysis of the PM₂.₅ source composition that is most strongly associated with health endpoints. We leveraged data from health surveillance of children less than five years of age between 2005 and 2014 in Kamalapur, Bangladesh, including daily physician-confirmed diagnoses of pneumonia and upper respiratory infection. Twice-weekly source-apportioned ambient PM₂.₅ measurements were obtained for the same period, and Poisson regression adjusted for time-varying covariates was used to estimate lagged associations between ambient PM₂.₅ and respiratory infection. We use complementary matching and stratification approaches to evaluate whether these associations vary across PM₂.₅ source composition. Total PM₂.₅ mass was associated with a modest increase in incidence of pneumonia, with a peak effect size two days after exposure (rate ratio = 1.032; 95% confidence interval = 1.008–1.056). We did not identify a significant association between PM₂.₅ and upper respiratory infection. Stratified and matching analyses suggested this association was stronger among days when ambient PM₂.₅ had a higher mass percent associated with brick kiln and fugitive lead emissions.: This study suggests that elevated ambient PM₂.₅ contributes to increased incidence of child pneumonia in urban Dhaka, and that this relationship varies among days with different source composition of PM₂.₅.
显示更多 [+] 显示较少 [-]Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks 全文
2021
Xiao, Enzong | Ning, Zengping | Sun, Weimin | Jiang, Shiming | Fan, Wenjun | Ma, Liang | Xiao, Tangfu
Thallium (Tl) is a highly toxic metalloid and is considered a priority pollutant by the US Environmental Protection Agency (EPA). Currently, few studies have investigated the distribution patterns of bacterial and fungal microbiomes in Tl-impacted environments. In this study, we used high-throughput sequencing to assess the bacterial and fungal profiles along a gradient of Tl contents in Tl mine waste rocks in southwestern China. Our results showed that Tl had an important, but different influence on the bacterial and fungal diversity indices. Using linear regression analysis, we furtherly divided the dominant bacterial and fungal groups into three distinct microbial sub-communities thriving at high, moderate, and low levels of Tl. Furthermore, our results also showed that Tl is also an important environmental variable that regulates the distribution patterns of ecological clusters and indicator genera. Interestingly, the microbial groups enriched in the samples with high Tl levels were mainly involved in metal and nutrient cycling. Taken together, our results have provided useful information about the responses of bacterial and fungal groups to Tl contamination.
显示更多 [+] 显示较少 [-]Biodegradation and photo-Fenton degradation of bisphenol A, bisphenol S and fluconazole in water 全文
2021
Frankowski, Robert | Płatkiewicz, Julia | Stanisz, Ewa | Grześkowiak, Tomasz | Zgoła-Grześkowiak, Agnieszka
Bisphenol A, bisphenol S, and fluconazole are ubiquitous environmental pollutants and their removal from water is of utmost importance. As the biodegradation of these compounds is usually not enough effective, often other degradation methods are required. The study presents the difference between biodegradation and photo-Fenton degradation with a much higher efficiency obtained in the latter process. Levels of biodegradation and chemical degradation were assessed based on high-performance liquid chromatography determination. Optimization of the photo-Fenton removal of bisphenol A, bisphenol S, and fluconazole resulted in about 100 % primary degradation of both bisphenols during 10–20 min and almost 90 % primary degradation of fluconazole within an hour. Degradation products formed in the process were identified using liquid chromatography with mass spectrometry and showed central scission of bisphenol S with the formation of phenol and sulfuric acid while for bisphenol A and fluconazole the oxidation resulted in much smaller structural changes.
显示更多 [+] 显示较少 [-]Identification of organosiloxanes in ambient fine particulate matters using an untargeted strategy via gas chromatography and time-of-flight mass spectrometry 全文
2021
Cheng, Zhen | Qiu, Xinghua | Shi, Xiaodi | Zhu, Tong
Organosilicons are widely used in consumer products and are ubiquitous in living environments. However, there is little systemic information on this group of pollutants in ambient particles. This study proposes a novel untargeted strategy based mainly on the mass difference of three silicon isotopes to screen organosilicon compounds from 2-year PM₂.₅ samples of Beijing using gas chromatography and high-resolution time-of-flight mass spectrometry. 61 organosilicons were filtered from 1019 peaks, and 35 ones were identified as organosiloxanes including 17 methylsiloxanes and 18 phenylmethylsiloxanes, of which 6 and 3 species were confirmed using reference standards, respectively. These organosiloxanes could be clustered into three groups: low-silicon-number methylsiloxanes, high-silicon-number methylsiloxanes, and phenylmethylsiloxanes. Low-silicon-number methylsiloxanes showed high abundance in the heating season but low abundance in the non-heating season, whereas high-silicon-number methylsiloxanes showed the opposite seasonal variation. This study provides a promising strategy for screening organosilicon compounds through an untargeted approach and gives insights for further investigation of the sources and health risks of organosiloxanes.
显示更多 [+] 显示较少 [-]Role of emissions and meteorology in the recent PM2.5 changes in China and South Korea from 2015 to 2018 全文
2021
Bae, Minah | Kim, Byeong-Uk | Kim, Hyun Cheol | Kim, Jhoon | Kim, Soontae
In this study, we examined the change rates of PM₂.₅ concentrations, aerosol optical depth (AOD), and the concentrations of PM₂.₅ precursors, such as SO₂ and NO₂, in China and South Korea using surface and satellite observations from 2015 to 2018. To quantify the impacts of the emissions and meteorology on the concentration changes, we performed a series of air quality simulations with year-specific meteorology and a fixed anthropogenic emissions inventory. The surface PM₂.₅ observations in China and South Korea decreased at rates of 9.1 and 4.3%/yr during the study period, respectively. The AODs from Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Ocean Color Imager (GOCI) also decreased faster over China than the AODs over South Korea. For the PM₂.₅ decrease in China, the emission impact was more significant (73%) than the meteorology impact (27%). On the contrary, in South Korea, the emissions and meteorology impacts on PM₂.₅ reductions were similar (51% vs 49%). The SO₂ concentration over China in 2018 significantly reduced to approximately half of the level in 2015. In turn, the sulfate concentration in Baengnyeong (BN), located in a downwind pathway from China to South Korea, decreased at a rate of 0.79%/month. However, the nitrate concentration in BN showed an increasing trend due to the non-linear chemical reactions among sulfate-nitrate-ammonium. The increased nitrate compensated for the reduced PM₂.₅ concentration from the sulfate decrease at BN. Additionally, the number of high (>50 μg/m³) PM₂.₅ concentration days continuously decreased in China, but the number in South Korea increased. It is noted that emission reductions in an upwind area do not guarantee corresponding air quality improvement in the downwind area when complex secondary aerosol formation processes, as well as spatiotemporal changes in meteorology, are involved in the transboundary transport of air pollutants.
显示更多 [+] 显示较少 [-]Seasonal distribution pattern and bioaccumulation of Polycyclic aromatic hydrocarbons (PAHs) in four bioindicator coastal fishes of Argentina 全文
2021
Recabarren-Villalón, Tatiana | Ronda, Ana C. | Oliva, Ana L. | Cazorla, Andrea Lopez | Marcovecchio, Jorge E. | Arias, Andrés H.
Polycyclic aromatic hydrocarbons (PAHs) are pollutants of global concern in coastal environments. They have a wide range of biological toxicity and due to their inherent properties, can easily bioaccumulate in organisms and concentrate in the environment. This work evaluated, in an integrated way, the seasonal PAH distribution patterns in sediments and four bioindicators fish species in a highly impacted estuary of Argentina; besides, their bioaccumulation patterns were assessed for the first time as indicator of ecological risk. The highest PAH levels in fish were found for Ramnogaster arcuata with an average of 64 ng g⁻¹ w.w., followed by Micropogonias furnieri (45 ng g⁻¹ w.w.), Cynoscion guatucupa (28 ng g⁻¹ w.w.), and Mustelus schmitti (16 ng g⁻¹ w.w.). Fish presented the highest PAH levels in fall with a predominance of petrogenic PAHs in colder seasons and pyrolytic PAHs in warmer seasons. Sediments presented an average of 233 ng g⁻¹ d.w. with the same seasonal composition pattern of the fish tissues. Additionally, the data suggested that the main source of PAHs are wastewater discharges. The bioaccumulation factor (BAF) of PAHs in the tested fishes were found to range from 0.3 to 8. The highest values were observed during fall and winter, while bioaccumulation did not occur in moist spring and summer samples, which would suggest a high biotransformation process during these seasons. Results suggested that class III of juvenile C. guatucupa and M. furnieri, and adults R. arcuata are more sensitive bioindicators of chronic PAH contamination and that their bioaccumulation is independent of the compound hydrophobicity; this could have a positively influence on the criteria used for biological monitoring programs along the Atlantic coast. In addition, the presented BAF data on the target species will serve as a useful pollution indicator for South Atlantic coastal fish.
显示更多 [+] 显示较少 [-]In situ calibration of polar organic chemical integrative sampler (POCIS) for monitoring of pharmaceuticals in surface waters 全文
2021
Vrana, Branislav | Urík, Jakub | Fedorova, Ganna | Švecová, Helena | Grabicová, Kateřina | Golovko, Oksana | Randák, Tomáš | Grabic, Roman
POCIS is the most widely applied passive sampler of polar organic substances, because it was one of the first commercially available samplers for that purpose on the market, but also for its applicability for a wide range of substances and conditions. Its main weakness is the variability of sampling performance with exposure conditions. In our study we took a pragmatic approach and performed in situ calibration for a set of 76 pharmaceuticals and their metabolites in five sampling campaigns in surface water, covering various temperature and flow conditions. In individual campaigns, RS were calculated for up to 47 compounds ranging from 0.01 to 0.63 L d⁻¹, with the overall median value of 0.10 L d⁻¹. No clear changes of RS with water temperature or discharge could be found for any of the investigated substances. The absence of correlation of experimental RS with physical-chemical properties in combination with the lack of mechanistic understanding of compound uptake to POCIS implies that practical estimation of aqueous concentrations from uptake in POCIS depends on compound-specific experimental calibration data. Performance of POCIS was compared with grab sampling of water in seven field campaigns comprising multiple sampling sites, where sampling by both methods was done in parallel. The comparison showed that for 25 of 36 tested compounds more than 50% of POCIS-derived aqueous concentrations did not differ from median of grab sampling values more than by a factor of 2. Further, for 30 of 36 compounds, more than 80% of POCIS data did not differ from grab sampling data more than by a factor of 5. When accepting this level of accuracy, in situ derived sampling rates are sufficiently robust for application of POCIS for identification of spatial and temporal contamination trends in surface waters.
显示更多 [+] 显示较少 [-]A novel method to evaluate chemical concentrations in muddy and sandy coastal regions before and after oil exposures 全文
2021
Xia, Junfei | Zhang, Wei | Ferguson, Alesia C. | Mena, Kristina D. | Özgökmen, Tamay M. | Solo-Gabriele, Helena M.
Oil spills can result in changes in chemical concentrations along coastlines. In prior work, these concentration changes were used to evaluate the date sediment was impacted by oil (i.e., oil exposure date). The objective of the current study was to build upon prior work by using the oil exposure date to compute oil spill chemical (OSC) concentrations in shoreline sediments before and after exposure. The new method was applied to OSC concentration measures collected during the Deepwater Horizon oil spill with an emphasis on evaluating before and after concentrations in muddy versus sandy regions. The procedure defined a grid that overlaid coastal areas with chemical concentration measurement locations. These grids were then aggregated into clusters to allow the assignment of chemical concentration measurements to a uniform coastal type. Performance of the method was illustrated for ten chemicals individually by cluster, and collectively for all chemicals and all clusters. Results show statistically significant differences between chemical concentrations before and after the calculated oil exposure dates (p < 0.04 for each of the 10 chemicals within the identified clusters). When aggregating all chemical measures collectively across all clusters, chemical concentrations were lower before oil exposure in comparison to after (p < 0.0001). Sandy coastlines exhibited lower chemical concentrations relative to muddy coastlines (p < 0.0001). Overall, the method developed is a useful first step for establishing baseline chemical concentrations and for assessing the impacts of disasters on sediment quality within different coastline types. Results may be also useful for assessing added ecological and human health risks associated with oil spills.
显示更多 [+] 显示较少 [-]Vertical migration of microplastics along soil profile under different crop root systems 全文
2021
Li, Haixiao | Lu, Xueqiang | Wang, Shiyu | Zheng, Boyang | Xu, Yan
Microplastics are highly accumulated in soils and supposed to migrate vertically due to water infiltration, fauna activities, and root growth. In this study, the vertical migration of microplastics along soil profile under three crop roots (corn, soybean, and ryegrass) was analyzed by a laboratory-scale incubation experiment. When microplastics were initially distributed in the surface layer, crop roots showed little effects on the vertical migration of microplastics. But in terms of homogenous microplastic distribution along soil profile, corn roots could contribute to the upward movement of microplastics in the middle layers (7–12 cm). It could be related to more pores and fissures created by primary and secondary corn roots and buoyancy effects once the pores and fissures were filled with water. Additionally, a significant positive correlation between microplastic numbers and tertiary roots of ryegrass has been observed and indicated the microplastic retention ability of fine crop roots. According to the results, in contrast to the downward microplastic migration caused by water infiltration and soil fauna activities, crop roots tended to move microplastics upwards or maintain them in soil layers.
显示更多 [+] 显示较少 [-]The role of respiratory droplet physicochemistry in limiting and promoting the airborne transmission of human coronaviruses: A critical review 全文
2021
Niazi, Sadegh | Groth, Robert | Spann, Kirsten | Johnson, Graham R.
Whether virulent human pathogenic coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2) are effectively transmitted by aerosols remains contentious. Transmission modes of the novel coronavirus have become a hot topic of research with the importance of airborne transmission controversial due to the many factors that can influence virus transmission. Airborne transmission is an accepted potential route for the spread of some viral infections (measles, chickenpox); however, aerosol features and infectious inoculum vary from one respiratory virus to another. Infectious virus-laden aerosols can be produced by natural human respiratory activities, and their features are vital determinants for virus carriage and transmission. Physicochemical characteristics of infectious respiratory aerosols can influence the efficiency of virus transmission by droplets. This critical review identifies studies reporting instances of infected patients producing airborne human pathogenic coronaviruses, and evidence for the role of physical/chemical characteristics of human-generated droplets in altering embedded viruses’ viability. We also review studies evaluating these viruses in the air, field studies and available evidence about seasonality patterns. Ultimately the literature suggests that a proportion of virulent human coronaviruses can plausibly be transmitted via the air, even though this might vary in different conditions. Evidence exists for respirable-sized airborne droplet nuclei containing viral RNA, although this does not necessarily imply that the virus is transmittable, capable of replicating in a recipient host, or that inoculum is sufficient to initiate infection. However, evidence suggests that coronaviruses can survive in simulated droplet nuclei for a significant time (>24 h). Nevertheless, laboratory nebulized virus-laden aerosols might not accurately model the complexity of human carrier aerosols in studying airborne viral transport. In summary, there is disagreement on whether wild coronaviruses can be transmitted via an airborne path and display seasonal patterns. Further studies are therefore required to provide supporting evidence for the role of airborne transmission and assumed mechanisms underlying seasonality.
显示更多 [+] 显示较少 [-]