细化搜索
结果 1121-1130 的 1,324
Biological Degradation of Common Pharmaceuticals and Personal Care Products in Soils with High Water Content 全文
2011
Carr, Deborah L. | Morse, Audra N. | Zak, John C. | Anderson, Todd A.
Biological degradation rates of six pharmaceuticals and personal care products were examined in soil from a land application site and in adjacent soil with no prior history of effluent exposure. Microbial degradation rates were compared over 2Â weeks under standing water or saturated conditions and draining conditions after having been saturated for 3Â days. Biological degradation of 17β-estradiol exhibited rapid rates of biological degradation under both saturated and draining conditions. Half-lives for 17β-estradiol ranged from 1.5 to 4Â days; 66–97% was lost from the soils. Estriol showed a pattern of biological degradation in both saturated and draining conditions though the half-lives were longer (8.7–25.9Â days) than those observed for 17β-estradiol. Twenty-eight percent to 73% of estriol was lost over the 14Â days treatment period. Estrone and 17α-ethinylestradiol exhibited slower rates of biological transformation under saturated and draining conditions. Half-lives for estrone ranged between 27.5 and 56.8Â days with loss of at most 21%. 17α-ethinylestradiol exhibited half-lives of 22.6–207Â days. Half-life data for ibuprofen ranged from 30.4 to 1,706.4Â days in this experiment. Losses of up to 17% were observed in draining soils. Triclosan loss was at most 10%, and half-lives were 70.9–398.8Â days. In all cases, soils that were draining from saturated conditions exhibited faster degradation rates than soils that remained saturated. Prior exposure of the soil to effluent did not always result in higher biological degradation rates.
显示更多 [+] 显示较少 [-]An Efficient Implementation of the Method of Lines for Multicomponent Reactive Transport Equations 全文
2011
Fahs, Marwan | Younes, Anis | Ackerer, Philippe
Modeling reactive transport with chemical equilibrium reactions requires solution of coupled partial differential and algebraic equations. In this work, two formulations are developed to combine the method of lines (MOL) with the global implicit approach. The first formulation has a non-conservative form and leads to a nonlinear system of ordinary differential equations with a reduced number of unknowns. The second formulation presents better conservation properties but leads to a nonlinear system of differential algebraic equations with a large number of unknowns. In both formulations, the resulting systems are integrated in time using the DLSODIS time solver which adapts both the order of the time integration and the time step size to provide the necessary accuracy. Numerical experiments show that higher-order time integration is effective for solving the non-conservative formulation and point out the high benefit of the MOL for solving reactive transport problems.
显示更多 [+] 显示较少 [-]Processes in Pathogenic Biocolloidal Contaminants Transport in Saturated and Unsaturated Porous Media: A Review 全文
2011
Sen, Tushar Kanti
There are several classes of subsurface colloids, abiotic and biotic. Basically, small particles of inorganic, organic and pathogenic biocolloids variety exist in natural subsurface system. Transport of these pathogenic biocolloidal contaminants (Viruses, bacteria and protozoa) pose a great risk in water resources and have caused large outbreaks of waterborne diseases. Biocolloid transport processes through saturated and unsaturated porous media is of significant interest, from the perspective of protection of groundwater supplies from contamination, assessment of risk from pathogens in groundwater and for the design of better water treatment systems to remove biocolloids from drinking water supplies This paper has reviewed the large volume of work that has already been done and the progress that has been made towards understanding the various basic multi-processes to predicting the biocolloid transport in saturated and unsaturated porous media. There are several basic processes such as physical, chemical and biological processes which are important in biocolloid transport. The physical processes such as advection, dispersion, diffusion, straining and physical filtration, adsorption and biological processes such as growth/decay processes and include active adhesion/detachment, survival and chemotaxis are strongly affected on biocolloid transport in saturated and unsaturated porous media. The unsaturated zone may play an important role in protecting aquifers from biocolloidal contamination by retaining them in the solid phase during their transport through the zone. Finally, author here highlighted the future research direction based on his critical review on biocolloid transport in saturated and unsaturated porous media.
显示更多 [+] 显示较少 [-]A Comparison of the Temporally Integrated Monitoring of Ecosystems and Adirondack Long-Term Monitoring Programs in the Adirondack Mountain Region of New York 全文
2011
Civerolo, Kevin L. | Roy, Karen M. | Stoddard, John L. | Sistla, Gopal
This paper compares lake chemistry in the Adirondack region of New York measured by the Temporally Integrated Monitoring of Ecosystems (TIME) and Adirondack Long-Term Monitoring (ALTM) programs by examining the data from six lakes common to both programs. Both programs were initiated in the early 1990s to track the efficacy of emission reduction policies and to assess the full impacts of acid deposition on surface water chemistry. They now serve to inform on the emerging chemical recovery of these waters. The Adirondack TIME program utilizes a probability-based approach to assess chronic acidification in a population of lakes using one summer sample per year. The ALTM attempts to track changes in both chronic and episodic acidification across a gradient of lake types using monthly samples. The ALTM project has two important attributes that contrast with the TIME program in the Adirondacks: higher temporal resolution (monthly versus once during the summer or fall) and speciation of aluminum. In particular, the ALTM program provides inorganic monomeric aluminum (AlIM), the fraction of Al that is most toxic. The monthly sampling of the ALTM program includes the spring snowmelt period when acid-neutralizing capacity and pH are near their lowest and Al levels are near their highest. We compare chemistry trends (1992–2008) for sulfate, nitrate, base cations, dissolved organic carbon, hydrogen ion, acid neutralizing capacity, and Al for the six lakes common to both programs. We also compare relatively high springtime AlIM concentrations from the ALTM with relatively low summertime total Al concentrations from the TIME, showing that the ALTM program provides a more biologically relevant indicator of the effects of acid deposition, illustrating the value of the complementary monitoring efforts in the Adirondack region.
显示更多 [+] 显示较少 [-]Field Study of Salt Balance of a Land Application System 全文
2011
Duan, Runbin | Fedler, Clifford B. | Sheppard, Christopher D.
Wastewater land application is a cost-effective method to treat and dispose wastewater; however, it may cause soil salinization. Salt mass balance and the potential soil salinization caused by the wastewater land application were investigated in the crop root zone in a wastewater land application system at the City of Littlefield, TX, USA from October 7, 2005 to September 28, 2007 using a lysimeter system. This study showed that, after 2 years of wastewater land application, the ranges of soil salinity were still lower than the threshold (8,500 μS/cm) for Bermuda grass assuming a 10% yield reduction. The leached salt mass showed large spatial and temporal variation. The average values of electrical conductivity of the saturated paste extract of the soil samples increased from 1,433 μS/cm in June 2006 to 1,840 μS/cm in June 2007. The average values of the soil sodium adsorption ratio between June 2006 and June 2007 increased from 11 to 14 resulting in a potential risk of soil dispersion and decreasing the soil infiltration rate. Although the measured leaching fractions in nearly all sampling periods, except one, were higher than the leaching requirement, salt accumulations in the root zone were still found with only two exceptions. Since the time required for reaching equilibrium between cumulative salt mass input and cumulative salt mass output varies from 1 year to a few years, or even longer, the long-term investigation is recommended for the study of salt mass balance in the root zone of this wastewater land application system.
显示更多 [+] 显示较少 [-]Removal Capacity of Caffeine, Hormones, and Bisphenol by Aerobic and Anaerobic Sewage Treatment 全文
2011
Froehner, Sandro | Piccioni, Willian | Machado, Karina Scurupa | Aisse, Miguel Mansur
The number of chemical compounds in sewage and consequently their release into the environment is increasing. Some of them are toxic and many of them are considered endocrine disrupters. Here, the capacity of three wastewater treatment plants (WWTPs) to remove caffeine, hormones and bisphenol-A was investigated. Bisphenol-A and caffeine are highly water-soluble compounds, as opposed to hormones (estradiol, estriol, and ethynilestradiol) which are hydrophobic compounds. In the Sewage Treatment Plant (SWT)1 the sewage is treated by activated sludge process, in the second plant, SWT2, sewage is treated by upflow anaerobic sludge blanket reactors followed by dissolved air flotation, and in the third, SWT3 sewage is treated by stabilization lagoons. The first lagoon is 3.5 m deep, thus facultative and polishment processes occur. It was speculated that there was a difference in efficiency between the three plants in removing micropollutants. Small differences were found in the amounts removed, probably accounted for by retention time. The caffeine and bisphenol-A were almost completely removed, higher than 90% for both compounds (bisphenol-A and caffeine) in all WWTPs. The hormones, however, had a smaller rate of removal, between 70% and 87%. It is suspected that retention time is essential for removal efficiency, together with type of treatment. In fact, the hormones, caffeine, and bisphenol-A found in the environment definitely come from untreated sewage.
显示更多 [+] 显示较少 [-]Salicaceae Establishment in a Heavy Metal-contaminated Site Revealed by Eco-physiological Characterization of the Culturable Soil Bacterial Fraction 全文
2011
De Paolis, M. R. | Pietrosanti, L. | Capotorti, G. | Massacci, A. | Lippi, D.
The polluted site object of our study was located on an island nourished using different materials, including industrial by-products, inside the area of Porto Marghera (Venice Lagoon, Italy). Until the 1970s, this area was one of the most important chemical districts in Italy and was largely subjected to heavy metals and metalloids pollution. In the year 2004, some Populus and Salix spp. had been planted in this polluted site in order to investigate both the hydrological control and the phytoremediation capability of these trees. In the present work, polluted soil was analyzed at different depths for both metals content and culturable microbial communities with the aim to evaluate the establishment of previously planted poplar and willow plants. Bacteria were characterized on the basis of the r/K-strategists distribution since r-strategists (fast-growing bacteria) and K-strategists (slow-growing bacteria) are characteristic for unstable and stable environments, respectively. A better characterization of bacterial communities composition was obtained from colony development and eco-physiological indices. Results appeared to confirm a good establishment of poplar and willow plants in the heavy metal contaminated site.
显示更多 [+] 显示较少 [-]Recent Atmospheric Deposition and its Effects on Sandstone Cliffs in Bohemian Switzerland National Park, Czech Republic 全文
2011
Vařilová, Zuzana | Navratil, Tomas | Dobešová, Irena
The protected area “Bohemian Switzerland National Park” with its characteristic sandstone landscape was influenced by the long-term air pollution and acidic deposition within the area known as Black Triangle (located where Germany, Poland, and the Czech Republic meet, is one of the Europe’s most polluted areas). The local Upper Cretaceous sandstone is subhorizontally stratified, fine- to coarse-grained, quartz dominated, with low content of clay minerals. One of the significant negative effects of the intensive acidic deposition on sandstone outcrops has been identified as chemical (salt) weathering, i.e., a process when the porous sandstone rock is except of chemical influence attacked also by force of crystallization of growing salts crystals. Anions NO3 − together with SO4 2− and cation NH4 + were the most abundant solutes in bulk precipitation samples. Current (2002 to 2009) bulk deposition fluxes of SO4 2− determined at three sites directly in the National Park indicate decline from 23 to 16 kg−1 ha−1 year−1. Infiltration of bulk precipitation solutes into the sandstone mediates the weathering processes. Natural outflow of sandstone pore-water (sandstone percolates) can be sampled only during certain days of year when the sandstone becomes saturated with water and percolates drip out on small number of sites from roofs of overhangs. Under usual conditions percolation water evaporates at the sandstone surface producing salt efflorescences—the typical example is Pravčická brána Arch locality. The average pH of the dripping sandstone percolates was 3.76. Concentration of SO4 2− and Al in sandstone percolates reached up to 46 and 10 mg L−1. The concentration of Al in percolates has been 160-fold greater the one in the precipitation samples suggesting the sandstone as a source. The water O and H isotopic composition of percolates has been virtually identical to precipitation samples, indicating thus relatively short residence time of the solutions within the sandstone pore-spaces. Evaporation experiments with bulk precipitation and percolate samples proved possible origin of some Ca in bulk precipitation and the sandstone rock as the source of Al and possibly of K for the salt efflorescence identified on Rock Arch body.
显示更多 [+] 显示较少 [-]Assessment of Heavy Metal Bioavailability in Contaminated Soils from a Former Mining Area (La Union, Spain) Using a Rhizospheric Test 全文
2011
Lambrechts, Thomas | Couder, Eléonore | Bernal, M Pilar | Faz, Ángel | Iserentant, Anne | Lutts, Stanley
A rhizospheric biotest, consisting of a thin layer of substratum in close contact with roots of Lolium multiflorum, was used on two contrasting contaminated soils (Cabezo and Brunita) issued from a former mining area in La Union (Spain). On top of this biotest, soil characterisation, including CaCl2 selective extractions, was performed. Total heavy metal concentrations were the highest in the soil from Cabezo, but CaCl2 extractions indicated higher heavy metal mobilities in Brunita soil. On the base of heavy metal concentrations and biomass production in L. multiflorum seedlings, availability assessed by the rhizospheric biotest was higher than the values obtained from CaCl2 extraction, except for Mn and Pb. Rhizospheric biotest also revealed higher heavy metal bioavailability for Cabezo. The low pH of Brunita (3.47) could explain the high CaCl2-extractable heavy metal concentrations as well as the high transfer factor found for Cu, Mn and Zn in this substrate. Cu, Mn and Zn toxicities were also detected for shoot tissues. Transpiration rates were clearly lower for seedlings exposed to Brunita than for those exposed to Cabezo, while water use efficiency was higher for the former (4.8 mg DW ml−1) than for the latter (3.8 mg DW ml−1). Iron nutrition was found to interfere with heavy metal root absorption, mainly through negative interactions during root absorption. It is concluded that rhizospheric test offers the advantage to consider the root–soil interactions in a dynamic perspective and constitutes a useful tool for the assessment of heavy metal availability on contaminated soils. Heavy metal bioavailability assessment should not be based on only one measure alone, but on different and complementary approaches.
显示更多 [+] 显示较少 [-]Effect of carboxylic and thiol ligands (oxalate, cysteine) on the kinetics of desorption of Hg(II) from kaolinite 全文
2011
U Senevirathna, Wasana | Zhang, Hong | Gu, Baohua
Sorption and desorption of Hg(II) on clay minerals can impact the biogeochemical cycle and bio-uptake of Hg in the environment. We studied the kinetics of the desorption of Hg(II) from kaolinite as affected by oxalate and cysteine, representing the ligands with carboxylic and thiol groups of different affinities for Hg(II). The effects of pH (3, 5, and 7), ligand concentration (0.25 and 1.0 mM), and temperature (15°C, 25°C, and 35°C) on the Hg(II) desorption were investigated through desorption kinetics. Our study showed that the Hg(II) desorption was pH dependent. In the absence of any organic ligand, >90% of the previously adsorbed Hg(II) desorbed at pH 3 within 2 h, compared to <10% at pH 7. Similar results were observed in the presence of oxalate, showing that it hardly affected the Hg(II) desorption. Cysteine inhibited the Hg(II) desorption significantly at all the pH tested, especially in the first 80 min with the desorption less than 20%, but the inhibition of the desorption appeared to be less prominent afterwards. The effect of the ligand concentration on the Hg(II) desorption was small, especially in the presence of oxalate. The effect of temperature on the Hg(II) desorption was nearly insignificant. The effect of the organic acids on the Hg(II) sorption and desorption is explained by the formation of the ternary surface complexes involving the mineral, ligand, and Hg(II). The competition for Hg(II) between the cysteine molecules adsorbed on the particle surfaces and in the solution phase probably can also affect the Hg(II) desorption.
显示更多 [+] 显示较少 [-]