细化搜索
结果 1131-1140 的 1,310
Atmospheric Absorption of Fluoride by Cultivated Species. Leaf Structural Changes and Plant Growth 全文
2011
Mesquita, Geisa Lima | Tanaka, Francisco André Ossamu | Cantarella, Heitor | Mattos, Dirceu Jr
Fluoride (F) is an air pollutant that causes phytotoxicity. Besides the importance of this, losses of agricultural crops in the vicinity of F polluting industries in Brazil have been recently reported. Injuries caused to plant leaf cell structures by excess F are not well characterized. However, this may contribute to understanding the ways in which plant physiological and biochemical processes are altered. A study evaluated the effects of the atmospheric F on leaf characteristics and growth of young trees of sweet orange and coffee exposed to low (0.04 mol L−1) or high (0.16 mol L−1) doses of HF nebulized in closed chamber for 28 days plus a control treatment not exposed. Gladiolus and ryegrass were used as bioindicators in the experiment to monitor F exposure levels. Fluoride concentration and dry mass of leaves were evaluated. Leaf anatomy was observed under light and electron microscopy. High F concentrations (~180 mg kg−1) were found in leaves of plants exposed at the highest dose of HF. Visual symptoms of F toxicity in leaves of citrus and coffee were observed. Analyses of plant tissue provided evidence that F caused degeneration of cell wall and cytoplasm and disorganization of bundle sheath, which were more evident in Gladiolus and coffee. Minor changes were observed for sweet orange and ryegrass. Increase on individual stomatal area was also marked for the Gladiolus and coffee, and which were characterized by occurrence of opened ostioles. The increased F absorption by leaves and changes at the structural and ultrastructural level of leaf tissues correlated with reduced plant growth.
显示更多 [+] 显示较少 [-]Implications of Age, Size and Region on Mercury Contamination in Estuarine Fish Species 全文
2011
Verdouw, Jeremy J. | Macleod, Catriona K. | Nowak, Barbara F. | Lyle, Jeremy M.
This study investigated the effects of age and length on mercury contamination in four fish species; yellow-eye mullet (Aldrichetta forsteri), black bream (Acanthopagrus butcheri), sand flathead (Platycephalus bassensis) and sea-run brown trout (Salmo trutta) from the Derwent Estuary, Tasmania, Australia, and examined the implications of these findings for public health monitoring. Mean mercury levels exceeded the Food Standards Australia and New Zealand maximum permitted level (0.5 mg kg⁻¹) for all species except yellow-eye mullet. Mean levels in black bream were significantly higher (p < 0.05) than other species and consequently are a particular concern for human health. Regional differences (p < 0.05) in mercury levels in sand flathead were not obviously correlated with metal levels in the sediments. However, age and length significantly (p < 0.05) influenced mercury levels in brown trout and sand flathead, with age being more strongly related to intraspecies differences. In addition, movement and distribution within the estuary and trophic status appeared to be important factors in contribution to interspecific variation. Consequently, a sound understanding of fish life history and biology is important in identifying species which may be susceptible to accumulating mercury and hence pose a potential threat to human health.
显示更多 [+] 显示较少 [-]Long-Term Annual and Seasonal Patterns of Acidic Deposition and Stream Water Quality in a Great Smoky Mountains High-Elevation Watershed 全文
2011
Cai, Meijun | Schwartz, John S. | Robinson, R Bruce | Moore, Stephen E. | Kulp, Matt A.
The recovery potential of stream acidification from years of acidic deposition is dependent on biogeochemical processes and varies among different acid-sensitive regions. Studies that investigate long-term trends and seasonal variability of stream chemistry in the context of atmospheric deposition and watershed setting provide crucial assessments on governing biogeochemical processes. In this study, water chemistries were investigated in Noland Divide watershed (NDW), a high-elevation watershed in the Great Smoky Mountains National Park (GRSM) of the southern Appalachian region. Monitoring data from 1991 to 2007 for deposition and stream water chemistries were statistically analyzed for long-term trends and seasonal patterns by using Seasonal Kendall Tau tests. Precipitation declined over this study period, where throughfall (TF) declined significantly by 5.76 cm year−1. Precipitation patterns play a key role in the fate and transport of acid pollutants. On a monthly volume-weighted basis, pH of TF and wet deposition, and stream water did not significantly change over time remaining around 4.3, 4.7, and 5.8, respectively. Per NDW area, TF SO4 2- flux declined 356.16 eq year−1 and SO4 2- concentrations did not change significantly over time. Stream SO4 2- remained about 30 μeq L−1 exhibiting no long-term trends or seasonal patterns. SO4 2- retention was generally greater during drier months. TF monthly volume-weighted NH4 + and NO3 - concentrations significantly increased by 0.80 μeq L−1 year−1 and 1.24 μeq L−1 year−1, respectively. TF NH4 + fluxes increased by 95.76 eq year−1. Most of NH4 + was retained in the watershed, and NO3 - retention was much lower than NH4 +. Stream monthly volume-weighted NO3 - concentrations and fluxes significantly declined by 0.56 μeq L−1 year−1 and 139.56 eq year−1, respectively. Overall, in NDW, inorganic nitrogen was exported before 1999 and retained since then, presumably from forest regrowth after Frazer fir die-off in the 1970s from balsam wooly adelgid infestation. Stream export of NO3 - was greater during winter than summer months. During the period from 1999 to 2007, stream base cations did not exhibit significant changes, apparently regulated by soil supply. Statistical models predicting stream pH, ANC, SO4 2-, and NO3 - concentrations were largely correlated with stream discharge and number of dry days between precipitation events and SO4 2- deposition. Dependent on precipitation, governing biogeochemical processes in NDW appear to be SO4 2- adsorption, nitrification, and NO3 - forest uptake. This study provided essential information to aid the GRSM management for developing predictive models of the future water quality and potential impacts from climate change.
显示更多 [+] 显示较少 [-]Microbially Mediated Degradation of Common Pharmaceuticals and Personal Care Products in Soil Under Aerobic and Reduced Oxygen Conditions 全文
2011
Carr, Deborah L. | Morse, Audra N. | Zak, John C. | Anderson, Todd A.
Biological degradation rates of estrogen compounds and common pharmaceutical and personal care products (PPCPs) were examined in soils with a long history of exposure to these compounds through wastewater effluent and in soil not previously exposed. Biological degradation rates over 14 days were compared under aerobic and anaerobic conditions. Estrogen compounds including estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol exhibited rapid degradation by soil microorganisms in both aerobic and anaerobic conditions. Rapid degradation rates for estrone, estriol, and 17α-ethinylestradiol occurred in pre-exposed soil under aerobic conditions; half-lives calculated under these conditions were 0.6, 0.7, and 0.8 day, respectively. Unexposed soil showed similar or slightly longer half-lives than pre-exposed soil under aerobic conditions. The exception was 17β-estradiol; in all treatments, degradation in unexposed soil resulted in a shorter half-life (2.1 versus 2.3 days). Anaerobic soils exhibited high biological degradation of estrogens as well. Half-lives of all estrogens ranged from 0.7 to 6.3 days in anaerobic soils. Triclosan degraded faster under aerobic conditions with half-lives of 5.9 and 8.9 days in exposed and unexposed soil. Under anaerobic conditions, triclosan half-lives were 15.3 days in unexposed and 28.8 days in exposed soil. Ibuprofen showed the least propensity toward biological degradation than other chemicals tested. Biological degradation of ibuprofen was only observed in unexposed soil; a half-life of 41.2 days was determined under anaerobic conditions and 121.9 days under aerobic conditions. Interestingly, unexposed soil exhibited a greater ability under anaerobic conditions to biologically degrade tested compounds than previously exposed soil.
显示更多 [+] 显示较少 [-]Regional Pattern of Heavy Metal Content in Lake Sediments in Northeastern Poland 全文
2011
Tylmann, Wojciech | Åysek, Katarzyna | Kinder, Małgorzata | Pempkowiak, Janusz
We investigated sediments from 23 lakes situated in northeastern Poland and analyzed them for major constituents and selected heavy metals. Short sediment cores were collected from the deepest parts of the lakes, and subsequently, a surface layer (0–2Â cm) and reference layer (50–52Â cm) were sampled from each. In the collected samples, the content of the major constituents (organic matter, carbonates, and minerogenic material) and chosen heavy metals (Cd, Cu, Ni, Pb, and Zn) was analyzed. In the reference layer, representing natural metal content, we identified quite a substantial diversity among lakes, making it difficult to pinpoint one geochemical background value for the whole region. A multivariate analysis of the interrelationships among elements and a comparison of the median values revealed no statistically significant differences between surface and reference levels. The ratio of the mean content in the surface and reference sediments ranged from 0.9 to 1.6, indicating the lack of or only slight anthropogenic pollution in surface sediments. From a spatial perspective, higher metal contents were observed in the eastern part of the study area, but this trend manifested in both surface and reference sediments. Thus, the inference is that the recently accumulated sediments are characterized by a content that is representative of the natural geochemical background for the selected metals.
显示更多 [+] 显示较少 [-]Chemically Modified Crop Residues as a Low-Cost Technique for the Removal of Heavy Metal Ions from Wastewater 全文
2011
Mosa, Ahmed Ali | El-Ghamry, Ayman | Trüby, Peter
Batch adsorption experiments were carried out to evaluate the effect of type of crop residues and chemical pretreatment solutions on the removal efficiency of heavy metal ions at different concentrations of synthetic wastewater solutions. Rice straw, cotton stalks, and maize stalks were pretreated with different solutions (i.e., sulfuric acid, oxalic acid, sodium hydroxide, and distilled water as the control treatment) in order to increase their metal-binding capacity. Results indicated that cotton stalks were the best biosorbent material according to their efficiency in removal of heavy metal ions. Sodium hydroxide was the best chemical pretreatment method for stimulating the biosorption capacity of crop residues. Ions of Pb2+ had the highest biosorption ratio among all competitive ions, whereas Mn2+ ions had the lowest. The removal efficiency decreased as the concentration of heavy metal ions increased in aqueous solutions. Sorption equilibrium isotherms could be described by the Langmuir model in most cases, whereas an isotherm of S shape was observed in other cases, which did not follow the Langmuir isotherm model. In conclusion, cotton stalks pretreated with sodium hydroxide could be used as an efficient technique for wastewater remediation prior to irrigation due to its low-cost, little processing, and high biosorption capacity.
显示更多 [+] 显示较少 [-]Antioxidant Activity in the Zebra Mussel (Dreissena polymorpha) in Response to Triclosan Exposure 全文
2011
Binelli, Andrea | Parolini, Marco | Pedriali, Alessandra | Provini, Alfredo
The biocide triclosan (TCS, 5-chloro-2-(2,4-dichlorophenoxy)phenol) is commonly used in several personal care products, textiles, and children’s toys. Because the removal of TCS by wastewater treatment plants is incomplete, its environmental fate is to be discharged into freshwater ecosystems, where its ecological impact is largely unknown. The aim of this study was to determine the effect of TCS on the antioxidant enzymatic chain of the freshwater mollusk zebra mussel (Dreissena polymorpha). We measured the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as the phase II detoxifying enzyme glutathione S-transferase (GST) in zebra mussel specimens exposed to 1Â nM, 2Â nM, and 3Â nM TCS in vivo. The mussels were exposed for 96Â h, and the enzyme activities were measured every 24Â h. We measured clear activation of GST alone at all three dose levels, which shows a poor induction of the antioxidant enzymatic chain by TCS. CAT and SOD were activated only at 3Â nM, while GPx values overlapped the baseline levels.
显示更多 [+] 显示较少 [-]Assessment of the Toxic Potential of Sewage Sludge in the Midgut of the Diplopod Rhinocricus padbergi 全文
2011
Giuliano Perez, Danielli | Fontanetti, Carmem Silvia
The destination of sewage sludge is a problem faced by sewage treatment plants (STPs). Many alternatives have been sought, such as the application of sewage sludge in degraded soils and in agriculture as fertilizer. However, due to the risk of contamination with pathogens and/or metals, the use of sludge should be done cautiously. By the habits that diplopods present, they have been considered good environmental indicators for soil analysis. In this study, animals from the Rhinocricus padbergi species were exposed to two sewage sludge samples from two STPs in the São Paulo State, for different periods. The midgut of the animals were removed and histologically processed and subjected to histochemical tests. It was detected the following tissular responses: clusters of haemocytes through the cells of the fat body layer, increase in the quantity of intracellular granules in the cells of the fat body layer, increase in the release of secretion vesicles of the intestinal epithelium, and intense vacuolization of the cytoplasm of epithelial cells. The results suggest the presence of toxic substances to the studied species in both sludge samples used.
显示更多 [+] 显示较少 [-]Bioremediation of Pulp and Paper Mill Effluent by Tannic Acid Degrading Enterobacter sp 全文
2011
Singh, Yogendra Prakash | Dhall, Purnima | Mathur, R. M. | Jain, R. K. | vadde Thakur, Vasanta | Kumar, Virendra | Kumar, Rita | Anil Kumar,
Wastewaters from pulp and paper mills are highly toxic and around 250 xenobiotic compounds have been reported in the effluents. Tannic acid degrading bacterium, Enterobacter sp. was isolated from soil by tannic acid enrichment. This isolate was used for bioremediation of pulp and paper mill effluents. Parameters like temperature, agitation, inoculum size and treatment duration were optimized by using Qualiteck-4 software. Reduction in lignin 73% and colour up to 82% was also observed. Encouraging results were observed is reduction of COD, BOD with 16-h retention time in batch culture.
显示更多 [+] 显示较少 [-]The Chemical Composition of Rainfall and Throughfall in Five Forest Communities: A Case Study in Fort Benning, Georgia 全文
2011
Bhat, Shirish | Jacobs, Jennifer M. | Bryant, Malcolm L.
In order to investigate the effects of canopy-dependent processes on throughfall chemistry, comparative studies on the chemical composition of throughfall were carried out in five characteristic forest types of the southeastern United States within Fort Benning Military Installation from January 2002 to August 2003. The concentrations and fluxes of and total organic carbon (TOC), total Kjeldahl nitrogen (TKN), and total phosphorus (TP) were determined in rainfall and throughfall. Seasonal variations in chemical fluxes were also evaluated. Throughfall concentrations of TOC, TKN, and TP in matured pine stand were higher than in rainfall and other forest stands. Throughfall nutrient concentrations in wetland were lowest as compared to rainfall as well as hardwood, mixed, plantation, and pine stands. The average TOC, TKN, and TP concentrations in the matured pine stand were 17.2, 0.74, and 0.057Â mg/L, respectively. In wetland stands, average concentrations of TOC, TKN, and TP were 4.0, 0.54, and 0.034Â mg/L, respectively. Hardwood stand had the lowest TKN concentration of 0.53Â mg/L. Nutrient fluxes were generally higher during the dormant season (November–April) as compared to the growing season (May–October). The highest and lowest TOC fluxes during dormant season were contributed from pine stand (801.7Â g/ha) and wetland stand (186.2Â g/ha), respectively. Rainfall was the major contributor of TKN fluxes in growing season (32.3Â g/ha) as well as in dormant season (34.1Â g/ha). Similarly, highest TP flux was produced in mixed stand (2.7Â g/ha) during the dormant season. Enrichment ratios of nutrients reveal that, in general, forest stands used up nutrients during growing season and washed off during the dormant season.
显示更多 [+] 显示较少 [-]