细化搜索
结果 1131-1140 的 6,548
Discriminative algorithm approach to forecast Cd threshold exceedance probability for rice grain based on soil characteristics 全文
2020
Yang, Jun | Zhao, Chen | Yang, Junxing | Wang, Jingyun | Li, Zhitao | Wan, Xiaoming | Guo, Guanghui | Lei, Mei | Chen, Tongbin
The relationship between cadmium (Cd) concentration in rice grains and the soil that they are cultivated in is highly uncertain due to the influence of soil properties, rice varieties, and other undetermined factors. In this study, we introduce the probability of exceeding the threshold to characterize this uncertainty and then, build a probabilistic forewarning model. Additionally, a number of associated factors have been used as parameters to improve model performance. Considering that the physicochemical properties and Cd concentration in the soil (Cdₛₒᵢₗ) do not follow a normal distribution, and are not independent of each other, a discriminative algorithm, represented by a logistic regression (LR), performed better than generative algorithms, such as the naive Bayes and quadratic discriminant analysis models. The performance of the LR based model was found to be 0.5% better in the case of the univariate model (Cdₛₒᵢₗ) and 4.1% better with a multivariate model (soil properties used as additional factors) (p < 0.01). The output of the LR based model predicted probabilities that were positively correlated to the true exceedance rate (R² = 0.949,p < 0.01), within an exceedance threshold range of 0.1–0.4 mg kg⁻¹ and a mean deviation of 5.75%. A sensitivity analysis showed that the effect of soil properties on the exceedance probability weakens with an increase in Cd concentration in rice grains. When the threshold is below 0.15 mg kg⁻¹, soil pH strongly influences the exceedance probability. As the threshold increases, the influence of pH on the exceedance probability is gradually superseded. By quantifying the uncertainty regarding the relationship between Cd concentration in rice grains and soil, the discriminative algorithm-based probabilistic forecasting model offers a new way to assess Cd pollution in rice grown in contaminated paddy fields.
显示更多 [+] 显示较少 [-]The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics 全文
2020
Qi, Xiaoli | Tam, Nora Fung-yee | Li, Wai Chin | Ye, Zhihong
The radial translocation of cadmium (Cd) from the root to the shoot is one of the major processes affecting Cd accumulation in rice (Oryza sativa L.) grains, but few studies have focused on Cd apoplastic transport in rice. The aim of this study was to determine how apoplastic barriers affect Cd translocation via the apoplastic pathway, Cd accumulation levels in upper parts (shoot and grains) of rice cultivars, and the possible mechanism involved. Hydroponic and soil pot trials were conducted to study the development and chemical constituents of apoplastic barriers and their permeability to bypass flow, and to determine Cd localization in the roots of rice cultivars with different Cd-accumulating characteristics. The Cd accumulation in upper parts was positively correlated with bypass flow in the root and the apparent Cd concentration in the xylem, indicating that the apoplastic pathway may play an important role in Cd root-shoot translocation in rice. Apoplastic barriers were deposited closer to the root tip and were thicker in low Cd-accumulating cultivars than in high Cd-accumulating cultivars. The amounts and rates of increase in lignin and suberin were significantly higher in ZD14 (a low Cd-accumulating cultivar) than in FYXZ (a high Cd-accumulating cultivar) under Cd stress, indicating that stronger barriers were induced by Cd in ZD14. The stronger and earlier formation of barriers in the low Cd-accumulating cultivar decreased bypass flow more efficiently, so that more Cd was retained in the root during apoplastic translocation. This was confirmed by localization analyses of Cd in root transverse sections. These results suggest that apoplastic barriers reduce Cd root-to-shoot translocation via the apoplastic pathway, leading to lower Cd accumulation in the upper parts of rice plants. Bypass flow may have the potential to be used as a rapid screening indicator for low Cd-accumulating rice cultivars.
显示更多 [+] 显示较少 [-]Disentangling the effects of habitat biogeochemistry, food web structure, and diet composition on mercury bioaccumulation in a wetland bird 全文
2020
Hall, Laurie A. | Woo, Isa | Marvin-DiPasquale, Mark | Tsao, Danika C. | Krabbenhoft, David P. | Takekawa, John Y. | De La Cruz, Susan E.W.
Methylmercury (MeHg) is a globally pervasive contaminant with known toxicity to humans and wildlife. Several sources of variation can lead to spatial differences in MeHg bioaccumulation within a species including: biogeochemical processes that influence MeHg production and availability within an organism’s home range; trophic positions of consumers and MeHg biomagnification efficiency in food webs; and individual prey preferences that influence diet composition. To better understand spatial variation in MeHg bioaccumulation within a species, we evaluated the effects of habitat biogeochemistry, food web structure, and diet composition in the wetland-obligate California black rail (Laterallus jamaicensis coturniculus) at three wetlands along the Petaluma River in northern San Francisco Bay, California, USA. The concentration of MeHg in sediments differed significantly among wetlands. We identified three sediment and porewater measurements that contributed significantly to a discriminant function explaining differences in habitat biogeochemistry among wetlands: the porewater concentration of ferrous iron, the percent organic matter, and the sediment MeHg concentration. Food web structure and biomagnification efficiency were similar among wetlands, with trophic magnification factors for MeHg ranging from 1.84 to 2.59. In addition, regurgitation samples indicated that black rails were dietary generalists with similar diets among wetlands (percent similarity indices > 70%). Given the similarities in diet composition, food web structure, and MeHg biomagnification efficiency among wetlands, we concluded that variation in habitat biogeochemistry and associated sediment MeHg production was the primary driver of differences in MeHg concentrations among black rails from different wetlands.
显示更多 [+] 显示较少 [-]Effect of silver nanoparticles on gill membranes of common carp: Modification of fatty acid profile, lipid peroxidation and membrane fluidity 全文
2020
Xiang, Qian-Qian | Wang, Di | Zhang, Ji-Lai | Ding, Cheng-Zhi | Luo, Xia | Tao, Juan | Ling, Jian | Shea, Damian | Chen, Li-Qiang
Although the toxicity of silver nanoparticles (AgNPs) in aquatic organisms has been extensively investigated, the mechanism by which AgNPs damage membranes remains unclear. This study investigated the toxic effects of a series of sub-lethal concentrations of AgNPs on the membranes of freshwater carp (Cyprinus carpio) gills, based on changes in membrane fatty acid (FA) profile, membrane fluidity, membrane lipid peroxidation, and histopathology. Most of the FAs in fish gill membrane was not significantly affected by exposure to multiple AgNPs concentrations, only few significant changes occurred in some specific FAs species at a high concentration of AgNPs exposure. In particular, high concentrations of AgNPs significantly decreased the proportions of two important long-chain n-3 series polyunsaturated FAs (C20: 5n3, and C22: 6n3), resulting in a decreased ratio of n-3 polyunsaturated FAs to n-6 polyunsaturated FAs (Σn-3UFA/Σn-6UFA). The AgNPs also caused a dose-dependent decrease in fish gill membrane fluidity, increased the level of lipid peroxidation, and inhibited Na+/K+-ATPase enzyme activity. Further histopathological examination revealed that exposure to AgNPs can cause toxic responses in the lamellae, including the thinning of the basement membrane, malformation, and inflammation. Together, the results suggest that the mechanism of AgNPs membrane toxicity involves the oxidization of long-chain omega-3 unsaturated FAs to saturated FAs via lipid peroxidation, resulting in, decreased membrane fluidity and ultimately the destruction of the normal physiological function of the fish gill membrane. The findings contribute significantly to our understanding of nanoparticle-induced membrane toxicity and potential risks in aquatic environments.
显示更多 [+] 显示较少 [-]Photo-induced phosphate release during sediment resuspension in shallow lakes: A potential positive feedback mechanism of eutrophication 全文
2020
Guo, Minli | Li, Xiaolu | Song, Chunlei | Liu, Guanglong | Zhou, Yiyong
Dissolved phosphate (Pᵢ) can be released during resuspended sediments exposed to sunlight. However, the significance of this phenomenon in the process of eutrophication is not clear. In this study, the behavior of photo-induced Pᵢ release during sediment resuspension in shallow lakes with the different trophic states was investigated. The amount of photo-induced Pᵢ release in the sediment resuspension from Lake Liangzi, Lake Dong, Lake Tangxun and Lake Longyang in China was 0.013, 0.019, 0.032, and 0.048 mg/L, respectively, and increased as the trophic states of the lakes increased. The results of phosphorus speciation analysis showed that the phosphate monoester in the particulate phosphorus is the organic phosphorus species participated in the photochemical reaction. The steady-state concentration of hydroxyl radical (OH) in the sediment resuspension also increased along with the trophic states of lakes increased and dissolved organic matter (DOM), nitrate, and Fe³⁺ presented in sediment resuspension were the main photosensitizers for OH production. All these results indicate that the increase of trophic states of lakes leads to the accumulation of organic phosphorus and OH, resulting in more dissolved phosphate photo-released, which accelerate the eutrophication process in a form of positive feedback.
显示更多 [+] 显示较少 [-]Re-estimating methane emissions from Chinese paddy fields based on a regional empirical model and high-spatial-resolution data 全文
2020
Sun, Jianfei | Wang, Minghui | Xu, Xiangrui | Cheng, Kun | Yue, Qian | Pan, Genxing
Quantifying methane (CH₄) emissions from paddy fields is essential for evaluating the environmental risks of the paddy rice production system, and improving the accuracy of CH₄ modeling is a key issue that needs to be addressed. Based on a database containing 835 field measurements, both single national and region-specific models were established to estimate CH₄ emissions from paddy fields considering different environmental factors and management patterns using 70% of the measurements. The remaining 30% of the measurements were then used for model evaluation. The performance of the region-specific model was better than that of the single national model. The region-specific model could simulate CH₄ emissions in an unbiased manner with R² values of 0.15–0.70 and efficiency values of 11–60%. The paddy rice type, water regime, organic amendment, latitude, and soil characteristics (pH and bulk density) were identified as the main drivers in the models. By inputting the high-resolution spatial data of these drivers into the established model, the CH₄ emissions from China’s paddy fields were estimated to be 4.75 Tg in 2015, with a 95% confidence interval of 4.19–5.61 Tg. The results indicated that establishing and driving a region-specific model with high-resolution data can improve the estimation accuracy of CH₄ emissions from paddy fields.
显示更多 [+] 显示较少 [-]Micro-scale particle simulation and traffic-related particle exposure assessment in an Asian residential community 全文
2020
Ling, Hong | Candice Lung, Shih-Chun | Uhrner, Ulrich
Conducting studies on sharp particulate matter (PM) gradients in Asian residential communities is difficult due to their complex building arrangements and various emission sources, particularly road traffic. In this study, a synthetic methodology, combining numerical simulations and minor field observations, was set up to investigate the dispersion of traffic-related PM in a typical Asian residential community and its contribution to PM exposure. A Lagrangian particle model (GRAL) was applied to estimate the spatiotemporal variation of the traffic-related PM increments within the community. A detailed topography dataset with 5 m horizontal resolution was used to simulate a micro-scale flow field. The model performance was comprehensively validated using both in-situ and mobile observations. The coefficient of determination (R²) of the simulated vs. observed PM₂.₅ reached 0.81 by an artery road, and 0.85 in alleys without significant road traffic. The maximum increments of kerbside PM exposure concentration contributed by road traffic during rush hour were found to be 38% (PM₁₀) and 40% (PM₂.₅). This synthetic method was used to assess the impact of synoptic wind and canyon orientation on residents’ PM₂.₅ exposure related to traffic exhaust. Perfect exponential decay curves of traffic-related PM₂.₅ were found within canyons. The decrease of road-traffic PM₂.₅ on five different floor levels, compared with that on kerbside levels, ranged between 42% and 100%. The results demonstrated that in complex Asian communities, Lagrangian particle models such as GRAL can simulate the spatial distribution of PM₁₀ and PM₂.₅ and assess the residents’ outdoor exposure.
显示更多 [+] 显示较少 [-]Risk of penicillin fermentation dreg: Increase of antibiotic resistance genes after soil discharge 全文
2020
Wang, Bing | Yan, Jianquan | Li, Guomin | Zhang, Jian | Zhang, Lanhe | Li, Zheng | Chen, Houhe
Penicillin fermentation dreg (PFD) is a solid waste discharged by pharmaceutical enterprises in the fermentation production process. Due to the residual antibiotic of PFD, the risk of antibiotic resistance bacteria (ARB) generation should be considered in the disposal process. High-throughput quantitative PCR (HT-qPCR) and 16S rRNA gene sequencing were performed to investigate the effect of PFD on the dynamics of antibiotic resistance genes (ARGs) and bacterial community during a lab-scale soil experiment. After the application of PFD, the bacterial number and diversity showed an obvious decrease in the initial days. The abundances of Streptomyces and Bacillus, which are the most widespread predicted source phyla of ARGs, increased remarkably from 4.42% to 2.59%–22.97% and 21.35%. The increase of ARGs was observed during the PFD application and the ARGs carried by PFD itself contributed to the initiation of soil ARGs. The results of redundancy analysis (RDA) show that the shift in bacterial community induced by variation of penicillin content is the primary driver shaping ARGs compositions.
显示更多 [+] 显示较少 [-]Biomaterial functionalized cerium nanocomposite for removal of fluoride using central composite design optimization study 全文
2020
Nehra, Sapna | Raghav, Sapna | Kumar, Dinesh
Excess fluoride concentration in drinking water is a global issue, as this has an adverse effect on human health. Several adsorbents have been synthesized from natural raw material to remove fluoride from water. Reported adsorbents have some problems with the leaching of metal ions, fewer adsorption sites, and low adsorption capacity. Therefore, to address this, an effective biomaterial derived from the Luffa cylindrica (LC), containing many active sites, was integrated with a nano form of cerium oxide to form a robust, biocompatible, highly porous, and reusable LC–Ce adsorbent. This synthesized biosorbent offers better interaction between the active sites of LC–Ce and fluoride, resulting in higher adsorption capacity. Several factors, influence the adsorption process, were studied by a central composite design (CCD) model of statistical analysis. Langmuir’s and Freundlich’s models well describe the adsorption and kinetics governed by the pseudo–second–order model. The maximum monolayer adsorption capacity was found to be 212 and 52.63 mg/g for LC–Ce and LC, respectively determined by the Langmuir model. Detailed XPS and FTIR analyses revealed the underlying mechanism of fluoride adsorption via ion-exchange, electrostatic interaction, H–bonding, and ion-pair formation. All the results indicate that LC–Ce could serve as a suitable adsorbent for efficient fluoride removal (80–85%).
显示更多 [+] 显示较少 [-]Patterns of mercury exposure and relationships with isotopes and markers of oxidative status in chicks of a Mediterranean seabird 全文
2020
Costantini, David | Bustamante, Paco | Brault-Favrou, Maud | Dell’Omo, Giacomo
The Mediterranean basin is a hotspot of mercury (Hg) contamination owing to intense anthropogenic emissions, volcanic activity and oligotrophic conditions. Little work has been done to assess the sources of Hg exposure for seabirds and, particularly, the physiological consequences of Hg bioaccumulation. In this study, we (i) describe the individual and temporal variation in blood concentration of total Hg (THg) over three breeding seasons, (ii) identify the factors that affect the THg exposure and (iii) determine the individual- and population-level connections between THg and blood-based markers of oxidative status in chicks of Scopoli’s shearwaters (Calonectris diomedea) breeding on the island of Linosa in the southern Mediterranean. We carried out the work on chicks near fledging because they are fed with prey captured near the colony, thus their Hg levels reflect local contamination. The concentration of THg in erythrocytes varied from 0.23 to 4.29 μg g⁻¹ dw. Chicks that were fed upon higher trophic level prey (i.e., higher δ¹⁵N values) had higher THg levels. Individual variation in THg concentrations was not explained by parental identity, sex nor δ¹³C values. There was significant variation in THg among chicks born from the same mother in different years. We found significant correlations between THg and markers of oxidative status; however, these correlations were no longer significant when we took into account the annual variation in mean values of all metrics. Males with higher values of body condition index had higher blood THg, while THg and body condition index were not correlated in females. Our data indicate that THg levels were moderate to high if compared to other seabirds. However, there is little evidence for harmful short-term detrimental effects owing to THg exposure.
显示更多 [+] 显示较少 [-]