细化搜索
结果 1131-1140 的 6,558
Neonatal exposure to a glyphosate-based herbicide alters the uterine differentiation of prepubertal ewe lambs 全文
2020
Alarcón, Ramiro | Rivera, Oscar E. | Ingaramo, Paola I. | Tschopp, María V. | Dioguardi, Gisela H. | Milesi, Mercedes M. | Muñoz-de-Toro, Mónica | Luque, Enrique H.
The exposure to endocrine-disrupting compounds (EDCs), such as glyphosate-based herbicides (GBHs), during early life might alter female fertility. The aim of the present study was to evaluate the effects of neonatal exposure to a GBH on sheep uterine development. To achieve this, Friesian ewe lambs were exposed to GBH (2 mg/kg of body weight/day; n = 12) or vehicle (controls; n = 10) through s.c. injections, from postnatal day (PND) 1 to PND14; on PND45, the uteri were obtained to evaluate histomorphological and molecular parameters. Morphological parameters were determined by picrosirius-hematoxylin staining. Protein expression of Ki67 (as a cell proliferation marker), p27, and molecules involved in uterine organogenetic differentiation was measured by immunohistochemistry. We also determined the mRNA expression of the IGF molecular pathway by RT-PCR. Although histomorphology was not modified, the uteri of GBH-exposed ewe lambs showed lower cell proliferation, together with higher p27 protein expression. In addition, the uteri of GBH-exposed ewe lambs showed increased gene expression of insulin-like growth factor binding protein 3 (IGFBP-3), decreased expression of ERα in the luminal (LE) and glandular (GE) epithelia and in the subepithelial stroma (SS), and lower PR expression in the LE but higher in the GE and SS. In addition, GBH treatment decreased the uterine expression of Wnt5a in the GE, of Wnt7a in the SS, of β-catenin in the LE and GE, of Hoxa10 in the SS, and of Foxa2 in the GE as compared with controls. In conclusion, neonatal exposure to GBH decreased cell proliferation and altered the expression of molecules that control proliferation and development in the uterus. All these changes might have adverse consequences on uterine differentiation and functionality, affecting the female reproductive health of sheep. GBH may be responsible for uterine subfertility, acting as an EDC.
显示更多 [+] 显示较少 [-]Effects of nano-zerovalent iron on antibiotic resistance genes and mobile genetic elements during swine manure composting 全文
2020
Wang, Qianzhi | Gu, Jie | Wang, Xiaojuan | Ma, Jiyue | Hu, Ding | Peng, Huiling | Bao, Jianfeng | Zhang, Ranran
Livestock manure is a reservoir for antibiotic resistance genes (ARGs), and aerobic composting is used widely for recycling animal manure. This study investigated the effects of adding nano-zerovalent iron (nZVI) at 0, 100, and 1000 mg/kg on the fates of ARGs and mobile genetic elements (MGEs) during swine manure composting. Under nZVI at 100 mg/kg, the relative abundances of sul1, sul2, dfrA7, ermF, and ermX decreased by 33.26–99.31% after composting, and the relative abundances of intI2 and Tn916/1545 decreased by 95.59% and 97.65%, respectively. Most of the ARGs and MGEs co-occurred and they had strong correlations with each other. The bacterial community structure was significantly separated by the composting periods, and they clustered together under different treatments in the same phase. Network analysis showed that Solibacillus, Clostridium_sensu_stricto_1, Terrisporobacter, Romboutsia, Turicibacter, Lactobacillus, Planococcus, Dietzia, and Corynebacterium_1 were common potential hosts of ARGs and MGEs. Redundancy analysis suggested that MGEs had key effects on the variations in the relative abundances of ARGs. Adding 100 mg/kg nZVI could reduce the environmental risk of ARGs by decreasing the abundances of MGEs.
显示更多 [+] 显示较少 [-]A nationwide assessment of litter on China’s beaches using citizen science data 全文
2020
Chen, Hongzhe | Wang, Sumin | Guo, Huige | Lin, Hui | Zhang, Yuanbiao
China is the largest plastic consumer in the world. Despite its plastic waste import ban in 2017, this populous economy inevitably generates a large amount of waste, including plastic waste, a considerable part of which has become marine litter. Data from the 2018 National Coastal Cleanup and Monitoring Project, the largest beach litter monitoring activities using the citizen science approach in China, have been retrieved and analyzed to understand spatial patterns, composition, and original usage of marine litter. Within this project, 24 beaches were surveyed every two months. As a result, the mean density was 3.85 ± 5.39 items m⁻², much higher than that reported by previous studies in China. There were great differences in the spatial distribution of litter. The highest densities appeared in the runoff-affected area of the Yangtze River, which was another difference from previous studies. Low-density, easy-to-transport foamed plastics were the major contributor to marine litter in these areas. Along China’s coast, approximately 90% of litter was from land-based sources, and over half of that originated from domestic sources. Including foamed plastic products, plastic litter with low recycling value dominated. Both natural and human factors influencing the spatiotemporal distribution and composition of litter are discussed. Socioeconomic factors, such as the lifestyle and consumption levels of citizens and local waste management systems, are possible explanations for the low-value characteristic of marine litter. The deviation between previous data and citizen science data in this study may be caused by many factors. Based on the discussion on these factors, some suggestions for citizen science research in China are also put forward.
显示更多 [+] 显示较少 [-]Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses 全文
2020
Li, Zhangtao | Wang, Lu | Wu, Jizi | Xu, Yan | Wang, Fan | Tang, Xianjin | Xu, Jianming | Ok, Yong Sik | Meng, Jun | Liu, Xingmei
Zeolite-supported nanoscale zero-valent iron (Z-NZVI) has great potential for metal(loid) removal, but its encapsulation mechanisms and ecological risks in real soil systems are not completely clear. We conducted long-term incubation experiments to gain new insights into the interactions between metal(loid)s (Cd, Pb, As) and Z-NZVI in naturally contaminated farmland soils, as well as the alteration of indigenous bacterial communities during soil remediation. With the pH-adjusting and adsorption capacities, 30 g kg⁻¹ Z-NZVI amendment significantly decreased the available metal(loid) concentrations by 10.2–96.8% and transformed them into strongly-bound fractions in acidic and alkaline soils after 180 d. An innovative magnetic separation of Z-NZVI from soils followed by XRD and XPS characterizations revealed that B-type ternary complexation, heterogeneous coprecipitation, and/or concurrent redox reactions of metal(loid)s, especially the formation of Cd₃(AsO₄)₂, PbFe₂(AsO₄)₂(OH)₂, and As⁰, occurred only under specific soil conditions. Sequencing of 16S rDNA using Illumina MiSeq platform indicated that temporary shifts in iron-resistant/sensitive, pH-sensitive, denitrifying, and metal-resistant bacteria after Z-NZVI addition were ultimately eliminated because soil characteristics drove the re-establishment of indigenous bacterial community. Meanwhile, Z-NZVI recovered the basic activities of bacterial DNA replication and denitrification functions in soils. These results confirm that Z-NZVI is promising for the long-term remediation of metal(loid)s contaminated farmland soil without significant ecotoxicity.
显示更多 [+] 显示较少 [-]Discriminative algorithm approach to forecast Cd threshold exceedance probability for rice grain based on soil characteristics 全文
2020
Yang, Jun | Zhao, Chen | Yang, Junxing | Wang, Jingyun | Li, Zhitao | Wan, Xiaoming | Guo, Guanghui | Lei, Mei | Chen, Tongbin
The relationship between cadmium (Cd) concentration in rice grains and the soil that they are cultivated in is highly uncertain due to the influence of soil properties, rice varieties, and other undetermined factors. In this study, we introduce the probability of exceeding the threshold to characterize this uncertainty and then, build a probabilistic forewarning model. Additionally, a number of associated factors have been used as parameters to improve model performance. Considering that the physicochemical properties and Cd concentration in the soil (Cdₛₒᵢₗ) do not follow a normal distribution, and are not independent of each other, a discriminative algorithm, represented by a logistic regression (LR), performed better than generative algorithms, such as the naive Bayes and quadratic discriminant analysis models. The performance of the LR based model was found to be 0.5% better in the case of the univariate model (Cdₛₒᵢₗ) and 4.1% better with a multivariate model (soil properties used as additional factors) (p < 0.01). The output of the LR based model predicted probabilities that were positively correlated to the true exceedance rate (R² = 0.949,p < 0.01), within an exceedance threshold range of 0.1–0.4 mg kg⁻¹ and a mean deviation of 5.75%. A sensitivity analysis showed that the effect of soil properties on the exceedance probability weakens with an increase in Cd concentration in rice grains. When the threshold is below 0.15 mg kg⁻¹, soil pH strongly influences the exceedance probability. As the threshold increases, the influence of pH on the exceedance probability is gradually superseded. By quantifying the uncertainty regarding the relationship between Cd concentration in rice grains and soil, the discriminative algorithm-based probabilistic forecasting model offers a new way to assess Cd pollution in rice grown in contaminated paddy fields.
显示更多 [+] 显示较少 [-]The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics 全文
2020
Qi, Xiaoli | Tam, Nora Fung-yee | Li, Wai Chin | Ye, Zhihong
The radial translocation of cadmium (Cd) from the root to the shoot is one of the major processes affecting Cd accumulation in rice (Oryza sativa L.) grains, but few studies have focused on Cd apoplastic transport in rice. The aim of this study was to determine how apoplastic barriers affect Cd translocation via the apoplastic pathway, Cd accumulation levels in upper parts (shoot and grains) of rice cultivars, and the possible mechanism involved. Hydroponic and soil pot trials were conducted to study the development and chemical constituents of apoplastic barriers and their permeability to bypass flow, and to determine Cd localization in the roots of rice cultivars with different Cd-accumulating characteristics. The Cd accumulation in upper parts was positively correlated with bypass flow in the root and the apparent Cd concentration in the xylem, indicating that the apoplastic pathway may play an important role in Cd root-shoot translocation in rice. Apoplastic barriers were deposited closer to the root tip and were thicker in low Cd-accumulating cultivars than in high Cd-accumulating cultivars. The amounts and rates of increase in lignin and suberin were significantly higher in ZD14 (a low Cd-accumulating cultivar) than in FYXZ (a high Cd-accumulating cultivar) under Cd stress, indicating that stronger barriers were induced by Cd in ZD14. The stronger and earlier formation of barriers in the low Cd-accumulating cultivar decreased bypass flow more efficiently, so that more Cd was retained in the root during apoplastic translocation. This was confirmed by localization analyses of Cd in root transverse sections. These results suggest that apoplastic barriers reduce Cd root-to-shoot translocation via the apoplastic pathway, leading to lower Cd accumulation in the upper parts of rice plants. Bypass flow may have the potential to be used as a rapid screening indicator for low Cd-accumulating rice cultivars.
显示更多 [+] 显示较少 [-]Disentangling the effects of habitat biogeochemistry, food web structure, and diet composition on mercury bioaccumulation in a wetland bird 全文
2020
Hall, Laurie A. | Woo, Isa | Marvin-DiPasquale, Mark | Tsao, Danika C. | Krabbenhoft, David P. | Takekawa, John Y. | De La Cruz, Susan E.W.
Methylmercury (MeHg) is a globally pervasive contaminant with known toxicity to humans and wildlife. Several sources of variation can lead to spatial differences in MeHg bioaccumulation within a species including: biogeochemical processes that influence MeHg production and availability within an organism’s home range; trophic positions of consumers and MeHg biomagnification efficiency in food webs; and individual prey preferences that influence diet composition. To better understand spatial variation in MeHg bioaccumulation within a species, we evaluated the effects of habitat biogeochemistry, food web structure, and diet composition in the wetland-obligate California black rail (Laterallus jamaicensis coturniculus) at three wetlands along the Petaluma River in northern San Francisco Bay, California, USA. The concentration of MeHg in sediments differed significantly among wetlands. We identified three sediment and porewater measurements that contributed significantly to a discriminant function explaining differences in habitat biogeochemistry among wetlands: the porewater concentration of ferrous iron, the percent organic matter, and the sediment MeHg concentration. Food web structure and biomagnification efficiency were similar among wetlands, with trophic magnification factors for MeHg ranging from 1.84 to 2.59. In addition, regurgitation samples indicated that black rails were dietary generalists with similar diets among wetlands (percent similarity indices > 70%). Given the similarities in diet composition, food web structure, and MeHg biomagnification efficiency among wetlands, we concluded that variation in habitat biogeochemistry and associated sediment MeHg production was the primary driver of differences in MeHg concentrations among black rails from different wetlands.
显示更多 [+] 显示较少 [-]Effect of silver nanoparticles on gill membranes of common carp: Modification of fatty acid profile, lipid peroxidation and membrane fluidity 全文
2020
Xiang, Qian-Qian | Wang, Di | Zhang, Ji-Lai | Ding, Cheng-Zhi | Luo, Xia | Tao, Juan | Ling, Jian | Shea, Damian | Chen, Li-Qiang
Although the toxicity of silver nanoparticles (AgNPs) in aquatic organisms has been extensively investigated, the mechanism by which AgNPs damage membranes remains unclear. This study investigated the toxic effects of a series of sub-lethal concentrations of AgNPs on the membranes of freshwater carp (Cyprinus carpio) gills, based on changes in membrane fatty acid (FA) profile, membrane fluidity, membrane lipid peroxidation, and histopathology. Most of the FAs in fish gill membrane was not significantly affected by exposure to multiple AgNPs concentrations, only few significant changes occurred in some specific FAs species at a high concentration of AgNPs exposure. In particular, high concentrations of AgNPs significantly decreased the proportions of two important long-chain n-3 series polyunsaturated FAs (C20: 5n3, and C22: 6n3), resulting in a decreased ratio of n-3 polyunsaturated FAs to n-6 polyunsaturated FAs (Σn-3UFA/Σn-6UFA). The AgNPs also caused a dose-dependent decrease in fish gill membrane fluidity, increased the level of lipid peroxidation, and inhibited Na+/K+-ATPase enzyme activity. Further histopathological examination revealed that exposure to AgNPs can cause toxic responses in the lamellae, including the thinning of the basement membrane, malformation, and inflammation. Together, the results suggest that the mechanism of AgNPs membrane toxicity involves the oxidization of long-chain omega-3 unsaturated FAs to saturated FAs via lipid peroxidation, resulting in, decreased membrane fluidity and ultimately the destruction of the normal physiological function of the fish gill membrane. The findings contribute significantly to our understanding of nanoparticle-induced membrane toxicity and potential risks in aquatic environments.
显示更多 [+] 显示较少 [-]Photo-induced phosphate release during sediment resuspension in shallow lakes: A potential positive feedback mechanism of eutrophication 全文
2020
Guo, Minli | Li, Xiaolu | Song, Chunlei | Liu, Guanglong | Zhou, Yiyong
Dissolved phosphate (Pᵢ) can be released during resuspended sediments exposed to sunlight. However, the significance of this phenomenon in the process of eutrophication is not clear. In this study, the behavior of photo-induced Pᵢ release during sediment resuspension in shallow lakes with the different trophic states was investigated. The amount of photo-induced Pᵢ release in the sediment resuspension from Lake Liangzi, Lake Dong, Lake Tangxun and Lake Longyang in China was 0.013, 0.019, 0.032, and 0.048 mg/L, respectively, and increased as the trophic states of the lakes increased. The results of phosphorus speciation analysis showed that the phosphate monoester in the particulate phosphorus is the organic phosphorus species participated in the photochemical reaction. The steady-state concentration of hydroxyl radical (OH) in the sediment resuspension also increased along with the trophic states of lakes increased and dissolved organic matter (DOM), nitrate, and Fe³⁺ presented in sediment resuspension were the main photosensitizers for OH production. All these results indicate that the increase of trophic states of lakes leads to the accumulation of organic phosphorus and OH, resulting in more dissolved phosphate photo-released, which accelerate the eutrophication process in a form of positive feedback.
显示更多 [+] 显示较少 [-]Re-estimating methane emissions from Chinese paddy fields based on a regional empirical model and high-spatial-resolution data 全文
2020
Sun, Jianfei | Wang, Minghui | Xu, Xiangrui | Cheng, Kun | Yue, Qian | Pan, Genxing
Quantifying methane (CH₄) emissions from paddy fields is essential for evaluating the environmental risks of the paddy rice production system, and improving the accuracy of CH₄ modeling is a key issue that needs to be addressed. Based on a database containing 835 field measurements, both single national and region-specific models were established to estimate CH₄ emissions from paddy fields considering different environmental factors and management patterns using 70% of the measurements. The remaining 30% of the measurements were then used for model evaluation. The performance of the region-specific model was better than that of the single national model. The region-specific model could simulate CH₄ emissions in an unbiased manner with R² values of 0.15–0.70 and efficiency values of 11–60%. The paddy rice type, water regime, organic amendment, latitude, and soil characteristics (pH and bulk density) were identified as the main drivers in the models. By inputting the high-resolution spatial data of these drivers into the established model, the CH₄ emissions from China’s paddy fields were estimated to be 4.75 Tg in 2015, with a 95% confidence interval of 4.19–5.61 Tg. The results indicated that establishing and driving a region-specific model with high-resolution data can improve the estimation accuracy of CH₄ emissions from paddy fields.
显示更多 [+] 显示较少 [-]