细化搜索
结果 1171-1180 的 7,214
Foliar dust particle retention and metal accumulation of five garden tree species in Hangzhou: Seasonal changes
2022
Dang, Ning | Zhang, Handan | Abdus Salam, Mir Md | Li, Haimei | Chen, Guangcai
As particulate matter and heavy metals in the atmosphere affect the atmospheric quality, they pose a threat to human health through the respiratory system. Vegetation can remove airborne particles and purify the atmosphere. Plant leaves are capable of effectively absorbing heavy metals contained by particulates. To evaluate the effects of different garden plants on the particulate matter retention and heavy metal accumulation, the seasonal changes of dust retention of five typical garden plants were compared in the industrial and non-industrial zones in Hangzhou. Results revealed that these species differed in dust retention with the descending order of Loropetalum chinense > Osmanthus fragrans > Pittosporum tobira > Photinia × fraseri > Cinnamomum camphora, which were related to the microstructure feature of the leaf. These species also showed seasonal variation in dust retention, with the highest in summer, followed by winter, autumn, and spring, respectively. The total suspended particle per unit leaf area was higher in the industrial site (80.54 g m⁻²) than in the non-industrial site (19.77 g m⁻²). Leaf particles in different size fractions differed among species, while coarse particles (d > ten μm) predominated in most cases. The L. chinense and C. camphora plants accumulated the greatest Pb and Ni compared to other plants. Overall, L. chinense was the best suitable plant species to improve the air quality.
显示更多 [+] 显示较少 [-]Colonization of biofilm in wastewater treatment: A review
2022
Li, Lixin | He, Zhengming | Liang, Taojie | Sheng, Tao | Zhang, Fugui | Wu, Dan | Ma, Fang
The attachment and colonization process of microorganisms on a carrier is an interdisciplinary research field. Through a series of physical, chemical, and biological actions, the microorganisms can eventually reproduce on the carrier. This article introduces biofilm start-up and its applications, and explores the current issues to look forward to future development directions. Firstly, the mechanism of microbial film formation is analyzed from the microbial community colonization and reproduction process. Secondly, when analyzing the factors influencing microbial membrane formation, the effect of microbial properties (e.g., genes, proteins, lipids) and external conditions (i.e., carrier, operating environment, and regulation mechanism among microbial communities) were discussed in depth. Aimed at exploring the mechanisms and influencing factors of biofilm start-up, this article proposes the application measures to strengthen this process. Finally, the problems encountered and the future development direction of the technology are analyzed and prospected.
显示更多 [+] 显示较少 [-]Transcriptional insights into Cu related tolerance strategies in maize linked to a novel tea-biochar
2022
Pehlivan, Necla | Wang, Jim J.
One-third of maize cultivation in Turkey has been performed in nutrient-rich soils of the coastal agricultural lands of the Black Sea Region, which is among the country's granaries. However, the yield of this chief crop is affected by Cu toxicity due to a decades-long abandoned opencast Cu-mine. As part of the modern agenda, against this problem, we valorized one of the region's signature plant waste by synthesizing a tea-derived biochar (BC) and evaluated for remediation effect on maize Cu tolerance. Among other rates (0%, 0.4%, 0.8%, 1.6%), maximum Cu absorption (168.27 mg kg⁻¹) was found in the 5%BC in in-vitro spiking experiments where natural Cu contamination levels were mimicked. Obvious increasing trends in both root and shoot tissues of maize plantlets growing in Cu-spiked soil (260.26 ± 5.19 mg Cu kg⁻¹) were recorded with proportionally increasing BC application rates. The black tea waste-BC (5%) amendment remarkably reduced the Cu uptake from Cu spiked-soil and showed no phenotypic retardation in maize. Accordingly, it boosted the metabolic and transcriptomic profile owing to up-regulation in the aquaporin and defense genes (PIP1;5 and POD1) by 1.31 and 1.6 fold. The tea-BC application also improved the soil-plant water relations by minimizing cytosolic volume changes between 85 and 90%, increasing chlorophyll intactness (65%) and membrane stability up to 41%. The tea-BC could be a strong agent with potential agronomic benefits in the remediation of the cationic Cu toxicity that occurred in the mining-contaminated agricultural soils.
显示更多 [+] 显示较少 [-]Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values
2022
Li, Cheng | Zhang, Chaosheng | Yu, Tao | Liu, Xu | Yang, Yeyu | Hou, Qingye | Yang, Zhongfang | Ma, Xudong | Wang, Lei
In recent years, the naturally high background value region of Cd derived from the weathering of carbonate has received wide attention. Due to the significant difference in soil Cd content and bioavailability among different parent materials, the previous land classification scheme based on total soil Cd content as the classification standard, has certain shortcomings. This study aims to explore the factors influencing soil Cd bioavailability in typical karst areas of Guilin and to suggest a scientific and effective farmland use management plan based on the prediction model. A total of 9393 and 8883 topsoil samples were collected from karst and non-karst areas, respectively. Meanwhile, 149 and 145 rice samples were collected together with rhizosphere soil in karst and non-karst areas, respectively. The results showed that the higher CaO level in the karst area was a key factor leading to elevated soil pH value. Although Cd was highly enriched in karst soils, the higher pH value and adsorption of Mn oxidation inhibited Cd mobility in soils. Conversely, the Cd content in non-karst soils was lower, whereas the Cd level in rice grains was higher. To select the optimal prediction model based on the correlation between Cd bioaccumulation factors and geochemical parameters of soil, artificial neural network (ANN) and linear regression prediction models were established in this study. The ANN prediction model was more accurate than the traditional linear regression model according to the evaluation parameters of the test set. Furthermore, a new land classification scheme based on an ANN prediction model and soil Cd concentration is proposed in this study, making full use of the spatial resources of farmland to ensure safe rice consumption.
显示更多 [+] 显示较少 [-]High probability of nitrogen and phosphorus co-limitation occurring in eutrophic lakes
2022
Zhou, Jian | Han, Xiaoxia | Brookes, Justin D. | Qin, Boqiang
Limnologists and governments have long had an interest in whether nitrogen (N) and/or phosphorous (P) limit algal productivity in lakes. However, the types and importance of anthropogenic and biogeochemical processes of N and P differ with lake trophic status. Here, a global lake dataset (annual average data from 831 lakes) demonstrates that total nitrogen (TN): total phosphorous (TP) ratios declined significantly as lakes become more eutrophic. From oligotrophic to hypereutrophic lakes, the probability of N and P co-limitation significantly increases from 15.0 to 67.0%, while P-only limitation decreases from 77.0 to 22.3%. Furthermore, TN:TP ratios are mainly affected by concentrations of TP (r = −0.699) rather than TN (r = −0.147). These results reveal that lake eutrophication mainly occurs with increasing P rather than N, which shifts lake ecosystems from stoichiometric P limitation toward a higher probability of N and P co-limitation. This study suggests that low N:P stoichiometry and a high probability of N and P co-limitation tend to occur in eutrophic systems.
显示更多 [+] 显示较少 [-]Air pollution exposure and depression: A comprehensive updated systematic review and meta-analysis
2022
Borroni, Elisa | Pesatori, Angela Cecilia | Bollati, Valentina | Buoli, Massimiliano | Carugno, Michele
We provide a comprehensive and updated systematic review and meta-analysis of the association between air pollution exposure and depression, searching PubMed, Embase, and Web of Sciences for relevant articles published up to May 2021, and eventually including 39 studies. Meta-analyses were performed separately according to pollutant type [particulate matter with diameter ≤10 μm (PM₁₀) and ≤2.5 μm (PM₂.₅), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ozone (O₃), and carbon monoxide (CO)] and exposure duration [short- (<30 days) and long-term (≥30 days)]. Test for homogeneity based on Cochran's Q and I² statistics were calculated and the restricted maximum likelihood (REML) random effect model was applied. We assessed overall quality of pooled estimates, influence of single studies on the meta-analytic estimates, sources of between-study heterogeneity, and publication bias. We observed an increased risk of depression associated with long-term exposure to PM₂.₅ (relative risk: 1.074, 95% confidence interval: 1.021–1.129) and NO₂ (1.037, 1.011–1.064), and with short-term exposure to PM₁₀ (1.009, 1.006–1.012), PM₂.₅ (1.009, 1.007–1.011), NO₂ (1.022, 1.012–1.033), SO₂ (1.024, 1.010–1.037), O₃ (1.011, 0.997–1.026), and CO (1.062, 1.020–1.105). The publication bias affecting half of the investigated associations and the high heterogeneity characterizing most of the meta-analytic estimates partly prevent to draw very firm conclusions. On the other hand, the coherence of all the estimates after excluding single studies in the sensitivity analysis supports the soundness of our results. This especially applies to the association between PM₂.₅ and depression, strengthened by the absence of heterogeneity and of relevant publication bias in both long- and short-term exposure studies. Should further investigations be designed, they should involve large sample sizes, well-defined diagnostic criteria for depression, and thorough control of potential confounding factors. Finally, studies dedicated to the comprehension of the mechanisms underlying the association between air pollution and depression remain necessary.
显示更多 [+] 显示较少 [-]Variations in source contributions of particle number concentration under long-term emission control in winter of urban Beijing
2022
Shang, Dongjie | Tang, Lizi | Fang, Xin | Wang, Lifan | Yang, Suding | Wu, Zhijun | Chen, Shiyi | Li, Xin | Zeng, Limin | Guo, Song | Hu, Min
Many studies revealed the rapid decline of atmospheric PM₂.₅ in Beijing due to the emission control measures. The variation of particle number concentration (PN) which has important influences on regional climate and human health, however, was rarely reported. This study measured the particle number size distributions (PNSD) in 3–700 nm in winter of Beijing during 2013–2019. It was found that PN decreased by 58% from 2013 to 2017, but increased by 29% from 2017 to 2019. By Positive matrix factorization (PMF) analysis, five source factors of PNSD were identified as Nucleation, Fresh traffic, Aged traffic + Diesel, Coal + biomass burning and Secondary. Overall, factors associated with primary emissions were found to decrease continuously. Coal + biomass burning dominated the reduction (65%) among the three primary sources during 2013–2017, which resulted from the great efforts on emission control of coal combustion and biomass burning. Fresh traffic and Aged traffic + Diesel decreased by 43% and 66%, respectively, from 2013 to 2019, as a result of the upgrade of the vehicle emission standards in Beijing-Tianjin-Hebei area. On the other hand, the contribution from Nucleation and Secondary decreased with the reduction of gaseous precursors in 2013–2017, but due to the increased intensity of new particle formation (NPF) and secondary oxidation, they increased by 56% and 70%, respectively, from 2017 to 2019, which led to the simultaneously increase of PN and particle volume concentration. This study indicated that NPF may play an important role in urban atmosphere under continuous air quality improvement.
显示更多 [+] 显示较少 [-]Characteristics of fluoride migration and enrichment in groundwater under the influence of natural background and anthropogenic activities
2022
Xu, Peng | Bian, Jianmin | Li, Yihan | Wu, Juanjuan | Sun, Xiaoqing | Wang, Yu
Excessive enrichment of fluoride threatens ecological stability and human health. The high-fluoride groundwater in the Chagan Lake area has existed for a long time. With the land consolidation and irrigation area construction, the distribution and migration process of fluoride have changed. It is urgent to explore the evolution of fluoride under the dual effects of nature and human. Based on 107 groundwater samples collected in different land use periods, hydrogeochemistry and isotope methods were combined to explore the evolution characteristics and hydrogeochemical processes of fluoride in typical high-fluoride background area and elucidate the impact of anthropogenic activities on fluoride migration. The results indicate that large areas of paddy fields are developed from saline-alkali land, and its area has increased by nearly 30%. The proportion of high-fluoride groundwater (>2 mg/L) has increased by nearly 10%, mainly distributed in the new irrigation area. Hydrogeochemical processes such as dissolution of fluorine-containing minerals, precipitation of carbonate minerals and exchange of Na⁺, Ca²⁺ on the water-soil interface control the enrichment of fluoride. The groundwater d-excess has no obvious change with the increase of TDS, and human activities are one of the reasons for the increase of fluoride. The concentration of fluoride is diluted due to years of diversion irrigation in old irrigation area, whereas the enrichment of δ²H, δ¹⁸O and Cl⁻ in new irrigation area indicates that the vertical infiltration of washing alkali and irrigation water brought fluoride and other salts to groundwater. Fertilizer and wastewater discharges also contribute to the accumulation of fluoride, manifesting as co-increasing nitrate and chloride salts. The results of this study provide a new insight into fluoride migration under anthropogenic disturbance in high-fluoride background areas.
显示更多 [+] 显示较少 [-]Biodiversity buffer the impact of eutrophication on ecosystem functioning of submerged macrophytes on the Yunnan-Guizhou Plateau, Southwest China
2022
Wang, Hao | Zhang, Xiaolin | Shan, Hang | Chaochao lv, | Ren, Wenjing | Wen, Zihao | Tian, Yuqing | Weigel, Benjamin | Ni, Leyi | Cao, Te
Increasing eutrophication poses a considerable threat to freshwater ecosystems, which are closely associated with human well-being. As important functional entities for freshwater ecosystems, submerged macrophytes have suffered rapidly decline with eutrophication. However, it is unclear whether and how submerged macrophytes maintain their ecological functions under increasing eutrophication stress and the underlying patterns in the process. In the current study, we conducted an extensive survey of submerged macrophytes in 49 lakes and reservoirs (67% of them are eutrophic) on the Yunnan-Guizhou Plateau of southwestern China to reveal the relationship between submerged macrophyte biodiversity and ecosystem functioning (BEF) under eutrophication stress. Results showed that submerged macrophytes species richness, functional diversity (FD), and β diversity had positive effects on ecosystem functioning, even under eutrophication. Functional diversity was a stronger predictor of community biomass than species richness and β diversity, while species richness explained higher coverage variability than FD and β diversity. This suggests that species richness was a reliable indicator when valid functional traits cannot be collected in considering specific ecological process. With increasing eutrophication in water bodies, the mechanisms underlying biodiversity-ecosystem functioning evolved from “niche complementarity” to “selection effects”, as evidenced by decreased species turnover and increased nestedness. Furthermore, the relative growth rate, specific leaf area, and ramet size in trade-off of community functional composition became smaller along eutrophication while flowering duration and shoot height became longer. This study contributes to a better understanding of positive BEF in freshwater ecosystems, despite increasing anthropogenic impacts. Protecting the environment remained the effective way to protect biodiversity and corresponding ecological functions and services. We hope focus on specific eco-functioning in future studies so as to effective formulation of management plans.
显示更多 [+] 显示较少 [-]Fine particles and pyrogenic carbon fractions regulate PAH partitioning and burial in a eutrophic shallow lake
2022
Ya, Miaolei | Wu, Yuling | Wang, Xinhong | Wei, Hengchen
Aquatic particles and organic carbon (OC) regulate the occurrence and transport of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) in water-suspended particle-sediment interfaces. Conventional studies on the mechanisms regulating the relationships between PAHs and total particles/OC have ignored micro-scale regulatory factors such as particle size and OC composition. Field research in the eutrophic shallow Lake Taihu, China, revealed that the fine particle fractions 2.7–10 μm in diameter had stronger PAH adsorption capacity and significantly regulated PAH particle size distribution and water-particle partitioning. Selective PAH biodegradation by planktonic microorganisms probably significantly weakened the capacity of the coarse fractions to regulate PAHs. OC fragments at different temperature gradients had markedly different influences on the particle size distribution of PAHs. High-temperature pyrogenic OC fractions (part of black carbon) were the principal OC regulatory factors for medium-to high-molecular-weight PAHs. However, the OC fragments did not directly affect the particle distribution of low-molecular-weight PAHs. During particle deposition and burial, microbial PAH utilization and efficiency probably regulated the burial potential of various hydrophobic PAH species. Biodegradation of relatively less hydrophobic PAHs with octanol-water partition coefficients (log Kₒw) < 5.8 showed an increasing trend with decreasing PAH hydrophobicity. Biological pump action of the relatively higher hydrophobic PAH species (log Kₒw > 5.8) showed a decreasing trend with increasing PAH hydrophobicity. The discoveries of the present work further clarified the mechanisms of PAH partitioning and burial in a eutrophic shallow lake and collectively provides a valuable reference for modeling the transport and dispersal mechanisms of hydrophobic, particle-bound organic contaminants in other aquatic ecosystems.
显示更多 [+] 显示较少 [-]