细化搜索
结果 1181-1190 的 6,548
Behavior of eukaryotic symbionts in large benthic foraminifers Calcarina gaudichaudii and Baculogypsina sphaerulata under exposure to wastewater 全文
2020
Akther, Shumona | Suzuki, Jumpei | Pokhrel, Preeti | Okada, Teruhisa | Imamura, Masahiro | Enomoto, Tadao | Kitano, Takashi | Kuwahara, Yuji | Fujita, Masafumi
Large benthic foraminifers (LBFs) are significant contributors to coral island formation in the Pacific Ocean. In recent years, the population of LBFs has decreased because of the increase in anthropogenic influences, such as wastewater (WW) discharge. To implement efficient mitigation measures, pollution tolerance in LBFs should be understood. However, the effects of WW on LBFs and their symbionts have not yet been demonstrated. This study examined the changes in the photosynthetic efficiency (Y[II]) of Calcarina gaudichaudii and Baculogypsina sphaerulata in response to WW by using a pulse-amplitude-modulation fluorometer. These LBFs were exposed to WW with different dilution levels for 22 days. The Y(II) values of the LBFs were found to deteriorate within 1–2 days. However, the Y(II) values both deteriorated and were enhanced in the experiments, thus indicating that WW contains both harmful and beneficial components. Baculogypsina sphaerulata showed an earlier response and greater sensitivity to WW and a higher epibiont infestation than C. gaudichaudii. This result can be attributed to the differences in the physiological and morphological responses of distinct LBFs. A sequencing analysis of 18S rDNA confirmed that the dominant eukaryotic symbionts in the two LBFs studied were Ochrophyta and Labyrinthulomycetes. These eukaryotic symbionts were released and attached as epibionts onto LBFs that were exposed to WW, thus leading to an increase in inactive LBFs. The Shannon–Weaver and Simpson diversity indices revealed that eukaryotic symbiont communities decreased in biodiversity after exposure to WW because of the abundance of algal symbionts. On the basis of these results, we conclude that WW, even with 10,000 × dilution, causes a decrease in active LBF populations owing to the release of eukaryotic symbionts, the decrease in biodiversity, and the infestation of epibionts even though Y(II) is temporarily enhanced. These responses are more significant in B. sphaerulata than in C. gaudichaudii.
显示更多 [+] 显示较少 [-]Removal of triphenyl phosphate by nanoscale zerovalent iron (nZVI) activated bisulfite: Performance, surface reaction mechanism and sulfate radical-mediated degradation pathway 全文
2020
Chen, Ruxia | Yin, Hua | Peng, Hui | Wei, Xipeng | Yu, Xiaolong | Xie, Danping | Lu, Guining | Dang, Zhi
Recently, sulfate radical-based advanced oxidation processes (SR-AOPs) have been studied extensively for the removal of pollutants, however, few researches focused on the activation of bisulfite by nanoscale zerovalent iron (nZVI), especially, surface reaction mechanism and sulfate radical-mediated degradation pathway have not been elucidated in detail. In this study, influencing factors, the kinetics, transformation pathway and mechanism of triphenyl phosphate (TPHP) degradation in the nZVI/bisulfite system were systematically discussed. Compared with Fe²⁺, nZVI was found to be a more efficient and long-lasting activator of bisulfite via gradual generation of iron ions. The optimal degradation efficiency of TPHP (98.2%) and pseudo-first-order kinetics rate constant (kₒbₛ = 0.2784 min⁻¹) were obtained by using 0.5 mM nZVI and 2.0 mM bisulfite at the initial pH 3.0. Both Cl⁻ and NO₃⁻ inhibited the degradation of TPHP and the inhibitory effect of Cl⁻ was stronger than that of NO₃⁻ due to the higher reaction rate of Cl⁻ with •SO₄⁻. Furthermore, SEM, XRD and XPS characterization revealed that a thin passivation layer (Fe₂O₃, Fe₃O₄, FeOOH) deposited on the surface of fresh nZVI and a few iron corrosion products generated and assembled on the surface of reacted nZVI. Radical quenching tests identified that •SO₄⁻ was the dominant reactive oxidative species (ROS) for TPHP removal. Based on HRMS analysis, six degradation products were determined and a sulfate radical-mediated degradation pathway was proposed. In a word, this study revealed that the nZVI/bisulfite system had a great potential for the TPHP elimination in waterbody.
显示更多 [+] 显示较少 [-]Acute and chronic exposure of the holometabolous life cycle of Aedes aegypti L. to emerging contaminants naproxen and propylparaben 全文
2020
Calma, Mayer L. | Medina, Paul Mark B.
Pharmaceuticals and personal care products (PPCPs) are a class of emerging contaminants commonly detected in environmental waters worldwide. Although reports about their detection in aquatic environments are increasing, limited studies show their effects on holometabolous insects. In this study, acute and chronic exposure to naproxen (0.02, 41, 82, 164, 382, 656, and 1312 mg L⁻¹) and propylparaben (0.02, 25, 50, 100, 250, 500, and 1000 mg L⁻¹) were evaluated in Aedes aegypti L. Acute exposure to naproxen (≥0.02 mg L⁻¹) and propylparaben (≥0.02 mg L⁻¹) reduced egg eclosion. Propylparaben (≥250 mg L⁻¹) caused significant larval mortality but naproxen did not even at the highest experimental concentration used. LC₅₀ for naproxen and propylparaben in larvae were 1100 mg L⁻¹ and 182.6 mg L⁻¹, respectively. Naproxen (≥0.02 mg L⁻¹) and propylparaben (≥0.02 mg L⁻¹) reduced pupation. Emergence was also reduced by naproxen (≥164 mg L⁻¹) and propylparaben (≥0.02 mg L⁻¹). The fecundity of females was significantly reduced due to chronic exposure to naproxen (≥0.02 mg L⁻¹). There was also a reduction in the fecundity of females due to chronic propylparaben exposure but it was statistically insignificant in the concentrations used. In the F1 generation eggs, only 100 mg L⁻¹ propylparaben reduced eclosion. Eclosion and larval survival were sensitive to acute exposure, particularly to propylparaben. The reduced pupation and emergence indicated a delay in the progression of the life cycle. Chronic exposure also indicated a reduction in fecundity. F1 eggs exhibited tolerance to the negative effect of subsequent exposure. Our findings suggest that propylparaben can affect Ae. aegypti more negatively than naproxen.
显示更多 [+] 显示较少 [-]Fate and risk assessment of sulfonamides and metabolites in urban groundwater 全文
2020
Jurado, Anna | Margareto, Alejandro | Pujades, Estanislao | Vázquez-Suñé, Enric | Díaz-Cruz, M. Silvia
Fate and risk assessment of sulfonamides and metabolites in urban groundwater 全文
2020
Jurado, Anna | Margareto, Alejandro | Pujades, Estanislao | Vázquez-Suñé, Enric | Díaz-Cruz, M. Silvia
Antibiotics, such as sulfonamides (SAs), have recently raised concern as wastewater treatment plants (WWTPs) partly remove them, and thus, SAs continuously enter the aquifers. In this context, the aims of this work are to (1) investigate the temporal evolution of SAs and metabolites in an urban aquifer recharged by a polluted river; (2) identify the potential geochemical processes that might affect SAs in the river-groundwater interface and (3) evaluate the ecological and human health risk assessment of SAs. To this end, 14 SAs and 4 metabolites were analyzed in river and urban groundwater from the metropolitan area of Barcelona (NE, Spain) in three different sampling campaigns. These substances had a distinct behavior when river water, which is the main recharge source, infiltrates the aquifer. Mixing of the river water recharge into the aquifer drives several redox reactions such as aerobic respiration and denitrification. This reducing character of the aquifer seemed to favor the natural attenuation of some SAs as sulfamethoxazole, sulfapyridine, and sulfamethizole. However, most of the SAs detected were not likely to undergo degradation and adsorption because their concentrations were constant along groundwater flow path. In fact, the intensity of SAs adsorption is low as the retardation factors are close to 1 at average groundwater pH of 7.2 for most SAs.Finally, risk quotients (RQs) are used to evaluate the ecological and human health risks posed by single and mixture of SAs in river water and groundwater, respectively. Life-stage RQs of the SAs detected in groundwater for the 8 age intervals were low, indicating that SAs and their mixture do not pose any risk to human beings. Concerning the environmental risk assessment, SAs do not pose any risk for algae, fish and crustaceans as the RQs evaluated are further lower than 0.1.
显示更多 [+] 显示较少 [-]Fate and risk assessment of sulfonamides and metabolites in urban groundwater 全文
2020
Jurado, Anna | Margareto, Alejandro | Pujades, Estanislao | Vázquez-Suñé, Enric | Diaz-Cruz, Silvia | European Commission | Ministerio de Ciencia e Innovación (España) | Vázquez-Suñé, Enric [0000-0001-7022-2192] | Diaz-Cruz, M. Silvia [0000-0003-3331-4076] | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Antibiotics, such as sulfonamides (SAs), have recently raised concern as wastewater treatment plants (WWTPs) partly remove them, and thus, SAs continuously enter the aquifers. In this context, the aims of this work are to (1) investigate the temporal evolution of SAs and metabolites in an urban aquifer recharged by a polluted river; (2) identify the potential geochemical processes that might affect SAs in the river-groundwater interface and (3) evaluate the ecological and human health risk assessment of SAs. To this end, 14 SAs and 4 metabolites were analyzed in river and urban groundwater from the metropolitan area of Barcelona (NE, Spain) in three different sampling campaigns. These substances had a distinct behavior when river water, which is the main recharge source, infiltrates the aquifer. Mixing of the river water recharge into the aquifer drives several redox reactions such as aerobic respiration and denitrification. This reducing character of the aquifer seemed to favor the natural attenuation of some SAs as sulfamethoxazole, sulfapyridine, and sulfamethizole. However, most of the SAs detected were not likely to undergo degradation and adsorption because their concentrations were constant along groundwater flow path. In fact, the intensity of SAs adsorption is low as the retardation factors are close to 1 at average groundwater pH of 7.2 for most SAs. Finally, risk quotients (RQs) are used to evaluate the ecological and human health risks posed by single and mixture of SAs in river water and groundwater, respectively. Life-stage RQs of the SAs detected in groundwater for the 8 age intervals were low, indicating that SAs and their mixture do not pose any risk to human beings. Concerning the environmental risk assessment, SAs do not pose any risk for algae, fish and crustaceans as the RQs evaluated are further lower than 0.1. | A.J acknowledges the support from the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Marie Sklodowska-Curie COFUND of the programme H2020 (BP3, contract number 801370). M.S.D.C acknowledges the Generalitat de Catalunya (Water and Soil Quality Unit, 2017-SGR-1404) and the Spanish Ministry of Science and Innovation (Project CEX 2018-000794-S). E.V.S would like to thank the European Commission, the Spanish Foundation for Science & Technology (FECYT) and State Research Agency (AEI)) for funding in the frame of the collaborative international consortium (URBANWAT) financed under the 2018 Joint call of the WaterWorks2017 ERA-NET Cofund. This ERA-NET is an integral part of the activities developed by the Water JPI. Additionally E.V.S also thank the Ministry of Science, Innovation and Universities, for funding the project UNBIASED (Ref: RTI 2018-097346-B-I00) under the 2018 call of the “Proyectos de I + D Retos Investigación. | Peer reviewed
显示更多 [+] 显示较少 [-]Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India 全文
2020
Kaur, Lakhvinder | Rishi, Madhuri S. | Siddiqui, Azeem Uddin
Human interferences have caused groundwater contamination in alluvial aquifers which subsequently affects the health of exposed population. In the present study, 74 groundwater samples from the semi-arid region of Panipat district, falling under Yamuna sub-basin, India was evaluated to know the potential non-carcinogenic human health risk in local adult and child population. The major objective of the present study was to know the non-carcinogenic human health risk due to intake of fluoride and nitrate contaminated water, using two different approaches: deterministic and probabilistic (Monte Carlo simulation). The values of hazard quotient (HQ) determined by deterministic as well as probabilistic approach were nearly identical. The hazard index (HI) value of 40.8% samples was above the unity in case of adults while 69.7% samples indicated HI value greater than unity for children thus indicating children are more prone to non-carcinogenic health risk than the adult population. Sensitivity analysis was performed to identify the influence of the non-carcinogenic human health risk predictor variables for the prediction of risk and concentration factor (CF) was the most influential variable. Multivariate statistical techniques were employed to know the positive and negative relationship of fluoride and nitrate with other parameters. Results of principal component analysis/factor analysis (PCA/FA) indicated that the concentration of fluoride is controlled by the presence of calcium due to their negative correlation in groundwater samples. The hierarchical agglomerative cluster analysis (HCA) also supported the outcome of PCA/FA and both indicated anthropogenic sources of fluoride and nitrate in groundwater.
显示更多 [+] 显示较少 [-]Butylated hydroxytoluene induces hyperactivity and alters dopamine-related gene expression in larval zebrafish (Danio rerio) 全文
2020
Liang, Xue-fang | Zhao, Yaqian | Liu, Wang | Li, Zhitong | Souders, Christopher L. | Martyniuk, Christopher J.
Butylated hydroxytoluene (BHT) is one of the most frequently used synthetic phenolic antioxidants added to food and consumer products such as plastics as a preservative. Due to its high production volume, BHT has been detected in aquatic environments, raising concerns about sub-lethal toxicity. However, there are limited toxicological data for BHT, especially in fish. In this study, zebrafish embryos were exposed to BHT at concentrations ranging 0.01–100 μM for up to 6 days post fertilization (dpf). Acute toxicity was assessed, and experiments revealed that BHT had a 96 h LC50 value of 57.61 μM. At sub-lethal doses (0.1–60 μM), BHT markedly decreased heart rates of zebrafish embryos at 48 h and 72 h by ∼25–30%. Basal and maximal respiration of zebrafish embryos at 24 hpf were decreased by 59.3% and 41.4% respectively following exposure to 100 μM BHT. Behavior in zebrafish was measured at 6 dpf following exposures to 0.01–10 μM BHT. Locomotor behaviors (e.g. total distance moved and velocity) were significantly increased in larvae at doses higher than 0.1 μM BHT. In addition, dark-avoidance behavior was decreased following exposure to 0.01 μM BHT, while conversely, it was increased in zebrafish exposed to 0.1 μM BHT. To investigate potential underlying mechanisms that could explain behavioral changes, transcripts involved in dopamine signaling were measured. Relative expression of dat mRNA was increased in larval fish from the 0.01 μM BHT treatment, while there were no effects on dat mRNA levels at higher concentrations. The mRNA levels of drd3 were decreased in zebrafish from the 1 μM BHT treatment. Taken together, BHT can affect the expression of the dopamine system, which is hypothesized to be related to the abnormal anxiety-associated behavior of larval zebrafish.
显示更多 [+] 显示较少 [-]Comprehensive investigation and risk study on pyrrolizidine alkaloid contamination in Chinese retail honey 全文
2020
He, Yisheng | Zhu, Lin | Ma, Jiang | Wong, Lailai | Zhao, Zhongzhen | Ye, Yang | Fu, Peter P. | Lin, Ge
Pyrrolizidine alkaloids (PAs) are common phytotoxins. We performed the first comprehensive investigation on PA contamination in Chinese honeys. LC-MS analysis revealed that 58% of 255 honey samples purchased from 17 regions across Mainland China and Taiwan contained PAs with total content ranging over 0.2–281.1 μg/kg. Monocrotaline (from Crotalaria spp), a PA never found in honey in other regions, together with echimidine (Echium plantagineum) and lycopsamine (from Senecio spp.), were three predominant PAs in PA-contaminated Chinese honeys. Further, PAs present in honeys were found to have geographically distinct pattern, indicating possible control of such contamination in future honey production. Moreover, we proposed a new risk estimation approach, which considered both content and toxic potency of individual PAs in honeys, and found that 12% of the PA-contaminated Chinese honeys tested might pose potential health risk. This study revealed a high prevalence and potential health risk of PA contamination in Chinese honeys.
显示更多 [+] 显示较少 [-]Long-term (2003–2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia 全文
2020
Singh, Atinderpal | Chou, Charles C.-K. | Chang, Shih-Yu | Chang, Shuenn-Chin | Lin, Neng-Huei | Chuang, Ming-Tung | Pani, Shantanu Kumar | Chi, Kai Hsien | Huang, Chiu-Hua | Lee, Chung-Te
This study examined the long-term trends in chemical components in PM₂.₅ (particulate matter with aerodynamic diameter ≤2.5 μm) samples collected at Lulin Atmospheric Background Station (LABS) located on the summit of Mt. Lulin (2862 m above mean sea level) in Taiwan in the western North Pacific during 2003–2018. High ambient concentrations of PM₂.₅ and its chemical components were observed during March and April every year. This enhancement was primarily associated with the long-range transport of biomass burning (BB) smoke emissions from Indochina, as revealed from cluster analysis of backward air mass trajectories. The decreasing trends in ambient concentrations of organic carbon (−0.67% yr⁻¹; p = 0.01), elemental carbon (−0.48% yr⁻¹; p = 0.18), and non–sea-salt (nss) K⁺ (−0.71% yr⁻¹; p = 0.04) during 2003–2018 indicated a declining effect of transported BB aerosol over the western North Pacific. These findings were supported by the decreasing trend in levoglucosan (−0.26% yr⁻¹; p = 0.20) during the period affected by the long-range transport of BB aerosol. However, NO₃⁻ displayed an increasing trend (0.71% yr⁻¹; p = 0.003) with considerable enhancement resulting from the air masses transported from the Asian continent. Given that the decreasing trends were for the majority of the chemical components, the columnar aerosol optical depth (AOD) also demonstrated a decreasing trend (−1.04% yr⁻¹; p = 0.0001) during 2006–2018. Overall decreasing trends in ambient (carbonaceous aerosol and nss-K⁺) as well as columnar (e.g., AOD) aerosol loadings at the LABS may influence the regional climate, which warrants further investigations. This study provides an improved understanding of the long-term trends in PM₂.₅ chemical components over the western North Pacific, and the results would be highly useful in model simulations for evaluating the effects of BB transport on an area.
显示更多 [+] 显示较少 [-]Transfer and transformation mechanisms of Fe bound-organic carbon in the aquitard of a lake-wetland system during reclamation 全文
2020
Liu, Rui | Ma, Teng | Lin, Chaohong | Chen, Juan | Lei, Kun | Liu, Xin | Qiu, Wenkai
Organic carbon (OC) can help control greenhouse gas emissions by participating in biogeochemical reactions and preventing the migration of contaminants in groundwater systems. The association of OC with Fe (Iron) oxide minerals plays a significant role in stabilizing OC and regulating the biogeochemical cycles of OC on the earth’s surface. Reclaiming farmland from lakes changes an original lake into a wetland, but the destiny of Fe bound-OC in the underlying aquitard during this process has been poorly understood. The mechanisms of migration and transformation of Fe bound-OC were investigated in subsurface aquitard sediments of three typical boreholes in the Chen Lake wetland, central China. The Fe bound-OC content in the natural sedimentary conditions (borehole A), transition area (borehole B), and intensive reclamation area (borehole C) were 0.17–3.87, 0.28–3.98 and 0.13–7.08 mg g⁻¹, respectively. The reclamation changed the redox, water, and infiltration conditions of the surface environment, resulting in a transformation of Fe oxides phases, and then cause the change of content and structure of Fe bound-OC. The fresh organic matter provided by undecomposed crops causes oxygen- and nitrogen-rich compounds to combine with Fe oxides extensively through adsorption, resulting in higher δ¹³C values of Fe bound-OC than non-Fe bound-OC. Fe bound-OC has strong resistance to biodegradation. The Fe bound-OC: total OC ratios generated by adsorption and coprecipitation on the surface layer (0 to −3.5 m) of borehole C was 10.37% and 18.86%, 6.92% and 12.46% higher than those of boreholes A and B, respectively. Coprecipitation has a stronger OC-binding ability and enriches more carboxylates and aromatics, while adsorption gradually assumed a dominant position in OC-Fe interaction in deep aquitard. The reduction dissolution of Fe oxide causes Fe bound-OC to transfer into pore water, leading to an increase of Fe ion and dissolved OC in deep strata.
显示更多 [+] 显示较少 [-]Estimating PM2.5 concentration of the conterminous United States via interpretable convolutional neural networks 全文
2020
Park, Yongbee | Kwon, Byungjoon | Heo, Juyeon | Hu, Xuefei | Liu, Yang | Moon, Taesup
We apply convolutional neural network (CNN) model for estimating daily 24-h averaged ground-level PM2.5 of the conterminous United States in 2011 by incorporating aerosol optical depth (AOD) data, meteorological fields, and land-use data. Unlike some of the recent supervised learning-based approaches, which only utilized the predictors from the location of which PM2.5 value is estimated, we naturally aggregate predictors from nearby locations such that the spatial correlation among the predictors can be exploited. We carefully evaluate the performance of our method via overall, temporally-separated, and spatially-separated cross-validations (CV) and show that our CNN achieves competitive estimation accuracy compared to the recently developed baselines. Furthermore, we develop a novel predictor importance metric for our CNN based on the recent neural network interpretation method, Layerwise Relevance Propagation (LRP), and identify several informative predictors for PM2.5 estimation.
显示更多 [+] 显示较少 [-]