细化搜索
结果 1221-1230 的 4,935
Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa) 全文
2019
Wang, Xiaoxuan | Sun, Wenjie | Ma, Xingmao
Arsenic (As) in rice grains is a serious food safety concern. Some coexisting engineered nanoparticles (ENPs) were shown to alter the accumulation and speciation of As in rice grains. However, investigation on the effects of copper oxide nanoparticles (CuO NPs), a popular ingredient in pesticides, on the uptake and accumulation of As is rare. We explored the potentially different impact of CuO NPs and corresponding Cu(II) ions on the accumulation of two As species in rice seedlings in a hydroponic system. Rice seedlings were treated with a combinations of 1 mg/L of arsenite (As(III)) or arsenate (As(V)) and 100 mg/L of CuO NPs or Cu(II) for 6 days. Both forms of Cu significantly reduced the accumulation of total As in rice tissues, with Cu(II) exhibiting significantly greater effect than CuO NPs. As speciation in rice roots was markedly affected by both forms of Cu, and the impacts were Cu-form dependent. For example, the co-existence of As(V) with CuO NPs led to a 45% decrease of As(V) in rice roots, while the co-existence of As(V) with Cu(II) caused a 47% increase in As(V) in rice roots. As speciation in rice shoots was less affected by co-present Cu than in rice roots. Co-occurring As(III) or As(V) lowered Cu concentration in rice roots by 40% and 50% in treatments with CuO NPs, but did not affect Cu content in rice roots co-exposed to Cu(II). The study confirmed the reciprocal effect of co-occurring CuO NPs or Cu(II) and As in rice paddies and highlighted the unique “nano-effect” of CuO NPs. The results alsos showed that the initial oxidation state of As plays an important role in the interactions between As and Cu. The results shed light on the current debate on the safe applications of nano-enabled agrichemicals vs. conventional metal salts in agriculture.
显示更多 [+] 显示较少 [-]Synthetic phenolic antioxidant propyl gallate induces male infertility through disruption of calcium homeostasis and mitochondrial function 全文
2019
Ham, Jiyeon | Lim, Whasun | Park, Sunwoo | Bae, Hyocheol | You, Seungkwon | Song, Gwonhwa
Propyl gallate (propyl 3,4,5-trihydroxybenzoate, PG) is a phenolic antioxidant that has been used for oil-containing foods to prevent acidification. Owing to its antioxidant properties, PG has been applied to various fields and active research is currently underway to prove PG as an anticancer agent. However, there are still concerns about PG as a possible reproductive toxicant. Therefore, we determined whether PG induced male infertility. Our results indicated that PG induced testicular dysfunction in both Leydig and Sertoli cells via suppression of cell viability and steroidogenesis. These normal testis functions were destroyed by PG-induced mitochondrial dysfunction and calcium homeostasis dysregulation. In addition, PG disrupted the expression of several genes associated with the testis function and induced endoplasmic reticulum stress. Furthermore, we verified PG-induced mRNA expression changes in steroidogenesis enzymes and hormone receptors in vitro and in vivo. From the results of the qPCR analysis, we further confirmed the PG-mediated reduction in the mRNA expression of genes related to testis functions by in situ hybridization. Finally, we demonstrated that PG induced testicular toxicity via the disruption of mitochondrial or ER function and the inhibition of testicular development-related genes in mice.
显示更多 [+] 显示较少 [-]Leachates of micronized plastic toys provoke embryotoxic effects upon sea urchin Paracentrotus lividus 全文
2019
Oliviero, Maria | Tato, Tania | Schiavo, Simona | Fernández, Verónica | Manzo, Sonia | Beiras, Ricardo
Microplastics are defined as plastic fragments <5 mm, and they are found in the ocean where they can impact on the ecosystem. Once released in seawater, microplastics can be internalized by organisms due to their small size, moreover they can also leach out several additives used in plastic manufacturing, such as plasticizers, flame retardants, etc., resulting toxic for biota. The aim of this study was to test the toxicity of micronized PVC products with three different colors, upon Paracentrotus lividus embryos. In particular, we assessed the effects of micronized plastics and microplastic leachates. Results showed a decrease of larval length in plutei exposed to low concentrations of micronized plastics, and a block of larval development in sea urchin embryos exposed to the highest dose. Virgin PVC polymer did not result toxic on P. lividus embryos, while an evident toxic effect due to leached substances in the medium was observed. In particular, the exposure to leachates induced a development arrest immediately after fertilization or morphological alterations in plutei. Finally, PVC products with different colors showed different toxicity, probably due to a different content and/or combination of heavy metals present in coloring agents.
显示更多 [+] 显示较少 [-]To what extent can the below-cloud washout effect influence the PM2.5? A combined observational and modeling study 全文
2019
Lu, Xingcheng | Chan, Siu Chung | Fung, Jimmy C.H. | Lau, Alexis K.H.
The below-cloud washout (BCW) effect on PM₂.₅ concentration during periods of rain is still a subject of debate. Existing BCW schemes for PM₂.₅ have large deficiencies that influence its simulation in 3D chemical transport models (CTMs). In this study, a 7-year dataset with high temporal resolution (in minutes) sampled from a pristine rural site is used to calculate the BCW coefficient during the rain events. The data used for the BCW coefficient calculation cover a wide range of rain intensity from 2 mm h⁻¹ to 60 mm h⁻¹. The BCW coefficient linearly correlates with the rain intensity, with a correlation coefficient of 0.82. The coefficient has a magnitude of 10⁻⁵ to 10⁻⁴ s⁻¹ when the rain intensity ranges from 1 to 40 mm h⁻¹. After implementing the updated BCW scheme into the Comprehensive Air Quality Model with Extensions (CAMx) model, the performance of PM₂.₅ simulation improves for the two months of heavy rain. Apart from the CAMx model, our scheme can be easily implemented into other 3D CTMs to improve PM₂.₅ simulation during rainy days. The BCW effect can clean around 10–40% of the PM₂.₅ over our study region, which can help to reduce the PM₂.₅ exposure level for residents, and the health burdens caused by this pollutant can thus be reduced. Rainmaking is a potential way to decrease PM₂.₅ concentration, but it cannot be the key method to reduce the PM₂.₅ level to the standard during episodic cases (e.g., >200 μg/m³).
显示更多 [+] 显示较少 [-]Subchronic exposure of environmentally relevant concentrations of F-53B in mice resulted in gut barrier dysfunction and colonic inflammation in a sex-independent manner 全文
2019
Pan, Zihong | Yuan, Xianling | Tu, Wenqing | Fu, Zhengwei | Jin, Yuanxiang
F-53B (6:2 chlorinated polyfluorinated ether sulfonate) is currently recognized as a safe alternative to long-chain PFASs in China. However, an increasing number of studies have recently authenticated its biotoxicological effects. In this study, for evaluating the gut toxicity of F-53B in mammals, both female and male mice were orally exposed to 0, 1, 3, or 10 μg/L F-53B for 10 weeks. Our results showed that F-53B significantly accumulated in the colon, ileum and serum when exposed to 10 μg/L F-53B for 10 weeks. F-53B exposure not only increased the transcriptional levels of ion transport-related genes but could also interact with the CFTR protein directly. Interestingly, subchronic F-53B exposure also increased the transcription of mucus secretion-related genes, but the protein level of Muc2 decreased after F-53B exposure, indicating that there was a compensatory phenomenon after mucus barrier injury. Furthermore, F-53B exposure also induced colonic inflammation associated with gut microbiota dysbiosis in the colon. Taken together, our results indicated that the potential gut toxicity of F-53B and almost all of the changed parameters were significantly affected in both female and male mice, suggesting that F-53B could disturb the gut barrier without sex dependence in mice.
显示更多 [+] 显示较少 [-]First evidence of microplastic contamination in the supraglacial debris of an alpine glacier 全文
2019
Ambrosini, Roberto | Azzoni, Roberto Sergio | Pittino, Francesca | Diolaiuti, Guglielmina | Franzetti, Andrea | Parolini, Marco
Contamination by plastic debris has been documented in most regions of the world, but their occurrence in high mountain areas has not been investigated to date. Here we present the first report of the occurrence and amount of microplastic in any terrestrial glacier environment. In the supraglacial debris of the Forni Glacier (Italian Alps), we observed the occurrence of (mean ± standard error) 74.4 ± 28.3 items kg⁻¹ of sediment (dry weight). This amount is within the range of variability of microplastic contamination observed in marine and coastal sediments in Europe. Most plastic items were made by polyesters, followed by polyamide, polyethylene and polypropylene. We estimated that the whole ablation area of Forni Glacier should host 131–162 million plastic items. Microplastic can be released directly into high elevation areas by human activities in the mountain or be transported by wind to high altitude. The occurrence of microplastic on Forni Glacier may be due to the gathering of debris coming from the large accumulation area into the relatively smaller ablation area of the glacier, as a consequence of its flow and melting.
显示更多 [+] 显示较少 [-]Anaerobic ammonium oxidation in agricultural soils-synthesis and prospective 全文
2019
Nie, San'an | Zhu, Gui-Bing | Singh, Brajesh | Zhu, Yong-Guan
Denitrification is considered as the dominant nitrogen (N) removing pathway, however, anaerobic oxidation of ammonium (anammox) also plays a significant part in N loss in agricultural ecosystems. Large N inputs into agricultural soils may stimulate the growth of anammox bacteria, resulting in high activity and diversity of anammox bacteria and subsequent more N loss. In some specific niches, like oxic-anoxic interface, three processes, nitrification, anammox and denitrification couple with each other, and significant anammox reaction could be observed. Soil parameters like pH, dissolved oxygen, salinity, oxidation-reduction potential (ORP), and substrate concentrations impact the anammox process. Here we summarize the current knowledge on anammox activity and contribution to N loss, abundance and diversity of anammox bacteria, factors affecting anammox, and the relationship between anammox and other N loss pathways in agricultural soils. We propose that more investigations are required for (1) the role of anammox to N loss with different agricultural management strategies; (2) microscale research on the coupling of nitrification-anammox-denitrification, that might be a very complex process but ideal model for further studies responsible for N cycling in terrestrial ecosystems; and (3) new methods to estimate differential contributions of anammox, codenitrification and denitrification in total N loss in agricultural ecosystems. New research will provide much needed information to quantify the contribution of anammox in N loss from soils at landscape, ecosystem and global scales.
显示更多 [+] 显示较少 [-]Evaluation of mitochondrial toxicity of cadmium in clam Ruditapes philippinarum using iTRAQ-based proteomics 全文
2019
Ji, Chenglong | Lu, Zhen | Xu, Lanlan | Li, Fei | Cong, Ming | Shan, Xiujuan | Wu, Huifeng
Cadmium is one of the most serious metal pollutants in the Bohai Sea. Previous studies revealed that mitochondrion might be the target organelle of Cd toxicity. However, there is a lack of a global view on the mitochondrial responses in marine animals to Cd. In this work, the mitochondrial responses were characterized in clams Ruditapes philippinarum treated with two concentrations (5 and 50 μg/L) of Cd for 5 weeks using tetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining, ultrastructural observation and quantitative proteomic analysis. Basically, a significant decrease of mitochondrial membrane potential (△Ψm) was observed in clams treated with the high concentration (50 μg/L) of Cd. Cd treatments also induced specific morphological changes indicated by elongated mitochondria. Furthermore, iTRAQ-based mitochondrial proteomics showed that a total of 97 proteins were significantly altered in response to Cd treatment. These proteins were closely associated with multiple biological processes in mitochondria, including tricarboxylic acid (TCA) cycle, oxidative phosphorylation, fatty acid β-oxidation, stress resistance and apoptosis, and mitochondrial fission. These findings confirmed that mitochondrion was one of the key targets of Cd toxicity. Moreover, dynamical regulations, such as reconstruction of energy homeostasis, induction of stress resistance and apoptosis, and morphological alterations, in mitochondria might play essential roles in Cd tolerance. Overall, this work provided a deep insight into the mitochondrial toxicity of Cd in clams based on a global mitochondrial proteomic analysis.
显示更多 [+] 显示较少 [-]Toxicogenomic responses of Caenorhabditis elegans to pristine and transformed zinc oxide nanoparticles 全文
2019
Starnes, Daniel | Unrine, Jason | Chen, Chun | Lichtenberg, Stuart | Starnes, Catherine | Svendsen, Claus | Kille, Peter | Morgan, John | Baddar, Zeinah Elhaj | Spear, Amanda | Bertsch, Paul | Chen, Kuey Chu | Tsyusko, Olga
Manufactured nanoparticles (MNPs) undergo transformation immediately after they enter wastewater treatment streams and during their partitioning to sewage sludge, which is applied to agricultural soils in form of biosolids. We examined toxicogenomic responses of the model nematode Caenorhabditis elegans to pristine and transformed ZnO-MNPs (phosphatized pZnO- and sulfidized sZnO-MNPs). To account for the toxicity due to dissolved Zn, a ZnSO₄ treatment was included. Transformation of ZnO-MNPs reduced their toxicity by nearly ten-fold, while there was almost no difference in the toxicity of pristine ZnO-MNPs and ZnSO₄. This combined with the fact that far more dissolved Zn was released from ZnO- compared to pZnO- or sZnO-MNPs, suggests that dissolution of pristine ZnO-MNPs is one of the main drivers of their toxicity. Transcriptomic responses at the EC₃₀ for reproduction resulted in a total of 1161 differentially expressed genes. Fifty percent of the genes differentially expressed in the ZnSO₄ treatment, including the three metal responsive genes (mtl-1, mtl-2 and numr-1), were shared among all treatments, suggesting that responses to all forms of Zn could be partially attributed to dissolved Zn. However, the toxicity and transcriptomic responses in all MNP treatments cannot be fully explained by dissolved Zn. Two of the biological pathways identified, one essential for protein biosynthesis (Aminoacyl-tRNA biosynthesis) and another associated with detoxification (ABC transporters), were shared among pristine and one or both transformed ZnO-MNPs, but not ZnSO₄. When comparing pristine and transformed ZnO-MNPs, 66% and 40% of genes were shared between ZnO-MNPs and sZnO-MNPs or pZnO-MNPs, respectively. This suggests greater similarity in transcriptomic responses between ZnO-MNPs and sZnO-MNPs, while toxicity mechanisms are more distinct for pZnO-MNPs, where 13 unique biological pathways were identified. Based on these pathways, the toxicity of pZnO-MNPs is likely to be associated with their adverse effect on digestion and metabolism.
显示更多 [+] 显示较少 [-]Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes 全文
2019
Yu, Sujuan | Shen, Mohai | Li, Shasha | Fu, Yueju | Zhang, Dan | Liu, Huayi | Liu, Jingfu
The intentional production and degradation of plastic debris may result in the formation of nanoplastics. Currently, the scarce information on the environmental behaviors of nanoplastics hinders accurate assessment of their potential risks. Herein, the aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes was investigated to shed some light on the fate of nanoplastics in the aquatic environment. Three monodisperse nanoparticles including unmodified nanoparticles (PS-Bare), carboxylated nanoparticles (PS–COOH) and amino modified nanoparticles (PS–NH₂), as well as one polydisperse nanoparticles that formed by laser ablation of polystyrene films (PS-Laser) were used as models to understand the effects of surface groups and morphology. Results showed that aggregation kinetics of negatively charged PS-Bare and PS-COOH obeyed the DLVO theory in NaCl and CaCl₂ solutions. The presence of Suwannee river natural organic matters (SRNOM) suppressed the aggregation of PS-Bare and PS-COOH in monovalent electrolytes by steric hindrance. However, in divalent electrolytes, their stability was enhanced at low concentrations of SRNOM (below 5 mg C L⁻¹), while became worse at high concentrations of SRNOM (above 5 mg C L⁻¹) due to the interparticle bridging effect caused by Ca²⁺ and carboxyl groups of SRNOM. The cation bridging effect was also observed for PS-laser in the presence of high concentrations of divalent electrolytes and SRNOM. The adsorption of SRNOM could neutralize or even reverse surface charges of positively charged PS-NH₂ at high concentrations, thus enhanced or inhibited the aggregation of PS-NH₂. No synergistic effect of Ca²⁺ and SRNOM was observed on the aggregation of PS-NH₂, probably due to the steric repulsion imparted by the surface modification. Our results highlight that surface charge and surface modification significantly influence aggregation behaviors of nanoplastics in aquatic systems.
显示更多 [+] 显示较少 [-]