细化搜索
结果 1241-1250 的 5,098
Temporal dynamics of SO2 and NOX pollution and contributions of driving forces in urban areas in China
2018
Zhao, Shuang | Liu, Shiliang | Hou, Xiaoyun | Cheng, Fangyan | Wu, Xue | Dong, Shikui | Beazley, Robert
SO₂ and NOX pollution have significantly reduced the air quality in China in past decades. Haze and acid rain have negatively affected the health of animals, plants, and human beings. Documented studies have shown that air pollution is influenced by multiple socioeconomic driving forces. However, the relative contributions of these driving forces are not well understood. In this study, using the structural equation model (SEM), we quantified the contributing effects of various forces driving air pollution in 2015 in prefecture-level cities of China. Our results showed that there has been significant control of SO₂ pollution in the past 20 years. The annual average SO₂ concentration has dropped from 83 μg/m³ in 1996 to 21 μg/m³ in 2015, while the annual average NOX concentration has increased from 47 μg/m³ in 1996 to 58 μg/m³ in 2015. We evaluated data on the annual average concentrations of SO₂, which in some cities may mask the differences of SO₂ concentrations between different months. Hence, SO₂ pollution should continue to be controlled in accordance with existing policies and regulations. However, we suggest that NOX should become the new focus of air pollution prevention and treatment. The SEM results showed that industrial scale, city size, and residents’ activities have a significant impact on NOX pollution. Among these, industrial scale had the highest contribution. The findings from our study can provide a theoretical basis for the formulation of NOX pollution control policy in China.
显示更多 [+] 显示较少 [-]The toxic effect of sodium fluoride on Spodoptera frugiperda 9 cells and differential protein analysis following NaF treatment of cells
2018
Zuo, Huan | Ma, Yukun | Kong, Ming | Yang, Yanhua | Lü, Peng | Qiu, Lipeng | Wang, Qiang | Ma, Shangshang | Chen, Keping
Accumulation of excess fluoride has a destructive effect on the environment, endangering human health, affecting organism growth and development, and leading to damage to the biological chain, thereby affecting ecological environment balance. In recent years, numerous studies focused on the molecular mechanisms associated with fluoride toxicity; however, fluoride-toxicity mechanisms in insect cells remain unclear. This study explored the toxic impact of sodium fluoride (NaF) on Spodoptera frugiperda 9 (Sf9) insect cells. High concentrations of NaF (10−4 M, 10−3 M and 10−2 M) resulted in cell enlargement, cell membrane blurring and breakage, and release of cellular contents. Dose-response curves indicated that NaF-specific inhibition rates on Sf9-cell activity increased along with increases in NaF concentration, with a half-inhibitory concentration (IC50) for NaF of 5.919 × 10−3 M at 72 h. Compared with controls, the percentages of early and late apoptotic and necrotic cells clearly increased based on observed increases in NaF concentrations. Two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to detect differentially expressed proteins in Sf9 cells treated with IC50 NaF, identifying 17 proteins, seven of which were upregulated and 10 downregulated. These results demonstrated that Sf9 cells showed signs of NaF-mediated toxicity through alterations in cell morphology, apoptosis rates, and protein expression.
显示更多 [+] 显示较少 [-]The prediction of combined toxicity of Cu–Ni for barley using an extended concentration addition model
2018
Wang, Xuedong | Meng, Xiaoqi | Ma, Yibing | Pu, Xiao | Zhong, Xu
Environment pollution often occurs as an obvious combined effect involving two (or more) elements, and this effect changes with the concentrations of the different elements. The effects on barley root elongation were studied in hydroponic systems to investigate the toxicity of Cu–Ni combined at low doses and at a fixed concentration ratio. For low doses of Cu–Ni, the addition of Ni (<0.5 μM) to Cu significantly decreased Cu toxicity for barley, but the addition of Cu (<0.25 μM) had no significant effect on Ni toxicity. At a fixed concentration ratio, according to the single effective concentration (EC) (barley root elongation inhibitory concentration) values of Cu and Ni, five sets of Cu–Ni fixed ratios were used: ECn(Cu)+ECm(Ni) (n + m = 100) (ECn and ECₘ indicate toxicity unit value for n% and m% inhibition of barley root length, respectively). The calculated toxicity unit value for 50% inhibition of root length ranged from 0.44 to 0.98 (i.e., <1), indicating a synergistic effect. To consider the interactions between the metal ions, the extended concentration addition model (e-CA) was established by integrating the Cu–Ni interaction into the concentration addition model (CA), and the data of two groups (the low doses of Cu–Ni and at a fixed concentration ratio) were respectively fitted. The e-CA accurately predicted the root length of barley under the Cu–Ni combined action. The correlation coefficient (r) and the root-mean-square error (RMSE) between predicted and observed values were 0.97 and 6.6 (low-dose group) and 0.96 and 8.12 (fixed-ratio group), respectively, and e-CA significantly improved the prediction accuracy compared to the traditional CA model without consideration of the Cu–Ni competition (r = 0.89, RMSE = 14.16). The results provided a theoretical basis for evaluation and remediation of soil contaminated with heavy metal composites.
显示更多 [+] 显示较少 [-]Distribution and diagenetic fate of synthetic surfactants and their metabolites in sewage-impacted estuarine sediments
2018
Li, Xiaolin | Doherty, Anne Cooper | Brownawell, Bruce | Lara-Martin, Pablo A.
Surfactants are high production volume chemicals used in numerous domestic and industrial applications and, after use, the most abundant organic contaminants in wastewater. Their discharge might jeopardize the receiving aquatic ecosystems, including sediments, where they tend to accumulate. This is the first comprehensive study on their distribution and fate in this environmental compartment as we performed simultaneous analysis of the three main classes of surfactants (anionic: LAS; nonionic: NPEO and AEO; cationic: DTDMAC, DADMAC, BAC, and ATMAC) and some of their transformation products (SPC, NP, NPEC, and PEG). To account for spatial and time trends, surface sediments and dated cores were collected from Jamaica Bay, a heavily sewage-impacted estuary in New York City. The concentrations of surfactants in surface sediments were between 18 and > 200 μg g⁻¹ and showed slight variation (<10%) over different sampling years (1998, 2003 and 2008). Cationic surfactants were found at the highest concentrations, with DTDMAC accounting for between 52 and 90% of the total sum of target compounds. Vertical concentration profiles in dated cores from the most contaminated station, in the vicinity of the biggest local sewage treatment plant (STP), indicated two sub-surface surfactant peaks in the mid-1960s (469 μg g⁻¹) and late 1980s (572 μg g⁻¹) coinciding with known STP upgrades. This trend was observed for most target compounds, except for DADMAC, C22ATMAC, and PEG, which showed a continuous increase towards the top of the cores. In-situ degradation was studied by comparing sediment core samples taken 12 years apart (1996 and 2008) and revealed a net decrease in PEG and specific surfactants (BAC, ATMAC, NPEO, and AEO) accompanied by growing concentrations of metabolites (SPC, NP, and NPEC). DTDMAC, DADMAC, and LAS, however, remained stable over this period, suggesting recalcitrant behavior under the anaerobic conditions in Jamaica Bay sediments.Chronology of major synthetic surfactants are illustrated in the dated sediment cores, as well as their different diagenetic fates.
显示更多 [+] 显示较少 [-]Can in vitro assays account for interactions between inorganic co-contaminants observed during in vivo relative bioavailability assessment?
2018
Ollson, Cameron J. | Smith, Euan | Juhasz, Albert L.
In vitro assays act as surrogate measurements of relative bioavailability (RBA) for inorganic contaminants. The values derived from these assays are routinely used to refine human health risk assessments (HHRA). Extensive in vitro research has been performed on three major inorganic contaminants; As, Cd and Pb. However, the majority of these studies have evaluated the contaminants individually, even in cases when they are found as co-contaminants. Recently, in vivo studies (animal model) have determined that when the three aforementioned contaminants are present in the same soil matrix, they have the ability to influence each other's individual bioavailability. Since in vitro assays are used to inform HHRA, this study investigated whether bioaccessibility methods including the Solubility/Bioavailability Research Consortium (SBRC) assay, and physiologically based extraction test (PBET), have the ability to detect interactions between As, Cd and Pb. Using a similar dosing methodology to recently published in vivo studies, spiked aged (12 years) soil was assessed by evaluating contaminant bioaccessibility individually, in addition to tertiary combinations. In two spiked aged soils (grey and brown chromosols), there was no influence on contaminant bioaccessibility when As, Cd and Pb we present as co-contaminants. However, in a red ferrosol, the presence of As and Pb significantly decreased (p < 0.05) the bioaccessibility of Cd when assessed using gastric and intestinal phases of the SBRC assay and the PBET. Conceivable, differences in key physico-chemical properties (TOC, Fe, Al, P) between the study soils influenced contaminant interactions and bioaccessibility outcomes. Although bioaccessibility methods may not account for interactions between elements as demonstrated in in vivo models, in vitro assessment provides a conservative prediction of contaminant RBA under co-contaminant scenarios.
显示更多 [+] 显示较少 [-]Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China
2018
Guo, Xing-pan | Liu, Xinran | Niu, Zuo-shun | Lu, Da-pei | Zhao, Sai | Sun, Xiao-li | Wu, Jia-yuan | Chen, Yu-ru | Tou, Fei-yun | Hou, Lijun | Liu, Min | Yang, Yi
Antibiotics resistance genes (ARGs) are considered as an emerging pollutant among various environments. As a sink of ARGs, a comprehensive study on the spatial and temporal distribution of ARGs in the estuarine sediments is needed. In the present study, six ARGs were determined in sediments taken along the Yangtze Estuary temporally and spatially. The sulfonamides, tetracyclines and fluoroquinolones resistance genes including sul1, sul2, tetA, tetW, aac(6’)-Ib, and qnrS, were ubiquitous, and the average abundances of most ARGs showed significant seasonal differences, with relative low abundances in winter and high abundances in summer. Moreover, the relative high abundances of ARGs were found at Shidongkou (SDK) and Wusongkou (WSK), which indicated that the effluents from the wastewater treatment plant upstream and inland river discharge could influence the abundance of ARGs in sediments. The positive correlation between intI1 and sul1 implied intI1 may be related to the occurrence and propagation of sulfonamides resistance genes. Correlation analysis and redundancy discriminant analysis showed that antibiotic concentrations had no significant correlation to their corresponding ARGs, while the total extractable metal, especially the bioavailable metals, as well as other environmental factors including temperature, clay, total organic carbon and total nitrogen, could regulate the occurrence and distribution of ARGs temporally and spatially. Our findings suggested the comprehensive effects of multiple pressures on the distribution of ARGs in the sediments, providing new insight into the distribution and dissemination of ARGs in estuarine sediments, spatially and temporally.
显示更多 [+] 显示较少 [-]Earthworm avoidance of silver nanomaterials over time
2018
Mariyadas, Jennifer | Amorim, Mónica J.B. | Jensen, John | Scott-Fordsmand, Janeck J.
Avoidance behaviour offers a highly relevant information as it reveals the ability to avoid (or not) possible toxic compounds in the field, hence it provides information on reasons for the presence/absence in the field. The earthworm Eisenia fetida was used to study avoidance behaviour to four silver forms (three nanomaterials (NMs) and one salt) over four time points (24, 48, 72 and 96 h), using OECD standard soil. Avoidance behaviour depended on both exposure material and concentration, but in general changed little with exposure duration. Avoidance was highest for the salt (AgNO₃) for all exposure durations and showed a continuous higher avoidance with time (based on EC₅₀ values). The AgNMs avoidance was in the order NM300K<AgNM-non coated = AgNM- PVP coated. It was not possible to identify one soil solution fraction that correlated with EC₅₀ across materials.
显示更多 [+] 显示较少 [-]Effects of land use on the concentration and emission of nitrous oxide in nitrogen-enriched rivers
2018
Yang, Libiao | Lei, Kun
Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Nitrogen-enriched rivers are significant sources of atmospheric N2O. This study conducted a one-year field campaign in seven N-enriched rivers draining urban, rural, and agricultural land to determine the link between the production, concentrations, and emissions of N2O and land use. Estimated N2O fluxes varied between 1.30 and 1164.38 μg N2O-N m−2 h−1 with a mean value of 154.90 μg N2O-N m−2 h−1, indicating that rivers were the net sources of atmospheric N2O. Concentrations of N2O ranged between 0.23 and 29.21 μg N2O-N L−1 with an overall mean value of 3.81 μg N2O-N L−1. Concentrations of ammonium and nitrate in urban and rural rivers were high in the cold season. The concentrations were also high in agricultural rivers in the wet season. N2O concentrations and emissions in rural and urban rivers followed a similar pattern to ammonium and a similar pattern to nitrate in agricultural rivers. A strong link between the concentrations and emissions of N2O and land use was observed. N2O concentrations in and emissions from the rivers draining the urban and rural areas were significantly higher than the rivers draining the agricultural areas (P < 0.01). Stepwise regression analysis indicated that dissolved N2O were primarily influenced by NH4+ in agricultural rivers and by NO3− in rural rivers; while dissolved N2O in urban rivers was primarily predicted by temperature and reflected the integrated impact of sewage input and river hydrology. Nitrate-N and NO3--O isotope data and linear regression of N2O and river water variables strongly indicated that dissolved N2O was mainly derived from nitrification in agricultural rivers and denitrification in rural and urban rivers.
显示更多 [+] 显示较少 [-]Association of polycyclic aromatic hydrocarbons exposure with atherosclerotic cardiovascular disease risk: A role of mean platelet volume or club cell secretory protein
2018
Hu, Chen | Hou, Jian | Zhou, Yun | Sun, Huizhen | Yin, Wenjun | Zhang, Youjian | Wang, Xian | Wang, Guiyang | Chen, Weihong | Yuan, Jing
Inflammation may play an important role in the association between exposure to polycyclic aromatic hydrocarbons (PAHs) and atherosclerotic cardiovascular disease (ASCVD) risk. However, the underlying mechanisms remain unclear.To investigate the association of PAHs exposure with ASCVD risk and effects of mean platelet volume (MPV) or Club cell secretory protein (CC16) on the association.A total of 2022 subjects (689 men and 1333 women) were drawn from the baseline Wuhan residents of the Wuhan-Zhuhai Cohort study. Data on demography and the physical examination were obtained from each participant. Urinary monohydroxy PAH metabolites (OH-PAHs) levels were measured by a gas chromatography-mass spectrometry. We estimated the association between each OH-PAHs and the 10-year ASCVD risk or coronary heart disease (CHD) risk using logistic regression models, and further analyze the mediating effect of MPV or plasma CC16 on the association by using structural equation modeling.The results of multiple logistic regression models showed that some OH-PAHs were positively associated with ASCVD risk but not CHD risk, including 2-hydroxyfluoren (β = 1.761; 95% CI: 1.194–2.597), 9-hydroxyfluoren (β = 1.470; 95% CI: 1.139–1.898), 1-hydroxyphenanthrene (β = 1.480; 95% CI: 1.008–2.175) and ΣOH-PAHs levels (β = 1.699; 95% CI: 1.151–2.507). The analysis of structural equation modeling shows that increased MPV and increased plasma CC16 levels contributed 13.6% and 15.1%, respectively, to the association between PAHs exposure and the 10-year ASCVD risk (p < 0.05).Exposure to PAHs may increase the risk of atherosclerosis, which was partially mediated by MPV or CC16.
显示更多 [+] 显示较少 [-]Tracing natural and industrial contamination and lead isotopic compositions in an Australian native bee species
2018
Zhou, Xiaoteng | Taylor, Mark Patrick | Davies, Peter J.
This study investigates trace element concentrations (arsenic (As), manganese (Mn), lead (Pb) and zinc (Zn)) and Pb isotopic compositions in an Australian native bee species, Tetragonula carbonaria, and its products of honey and wax. Co-located soil and dust samples were simultaneously analysed with the objective of determining if the bees or their products had potential application as a proxy for monitoring environmental contamination. The most significant relationships were found between Pb concentrations in honey (r = 0.814, p = 0.014) and wax (r = 0.883, p = 0.004) and those in co-located dust samples. In addition, Zn concentrations in honey and soil were significantly associated (r = 0.709, p = 0.049). Lead isotopic compositions of native bee products collected from background sites adjacent to Sydney national parks (²⁰⁶Pb/²⁰⁷Pb = 1.144, ²⁰⁸Pb/²⁰⁷Pb = 2.437) corresponded to local geogenic rock and soil values (²⁰⁶Pb/²⁰⁷Pb = 1.123–1.176, ²⁰⁸Pb/²⁰⁷Pb = 2.413–2.500). By contrast, inner Sydney metropolitan samples, including native bees and wax (²⁰⁶Pb/²⁰⁷Pb = 1.072–1.121, ²⁰⁸Pb/²⁰⁷Pb = 2.348–2.409), co-located soil and dust (²⁰⁶Pb/²⁰⁷Pb = 1.090–1.122, ²⁰⁸Pb/²⁰⁷Pb = 2.368–2.403), corresponded most closely to aerosols collected during the period of leaded petrol use (²⁰⁶Pb/²⁰⁷Pb = 1.067–1.148, ²⁰⁸Pb/²⁰⁷Pb = 2.341–2.410). A large range of Pb isotopic compositions in beehive samples suggests that other legacy sources, such as Pb-based paints and industrials, may have also contributed to Pb contamination in beehive samples. Native bee data were compared to corresponding samples from the more common European honey bee (Apis mellifera). Although Pb isotopic compositions were similar in both species, significant differences in trace element concentrations were evident across the trace element suite, the bees and their products. The statistical association between T. carbonaria and co-located environmental contaminant concentrations were stronger than those in European honey bees, which may be attributable to its smaller foraging distance (0.3–0.7 km versus 5–9 km, respectively). This implies that T. carbonaria may be more suitable for assessing small spatial scale variations of trace element concentrations than European honey bees.
显示更多 [+] 显示较少 [-]