细化搜索
结果 1241-1250 的 7,995
Temporal and spatial distributions and sources of heavy metals in atmospheric deposition in western Taihu Lake, China 全文
2021
Li, Yan | Zhou, Shenglu | Jia, Zhenyi | Liu, Ke | Wang, Genmei
Heavy metals in atmospheric dust can directly pollute the soil, water and sediment, causing serious harm to human health. In this study, the temporal and spatial distribution characteristics of heavy metals in atmospheric deposition in western Taihu Lake were studied. We established 10 sampling sites to collect atmospheric deposition for two years in different seasons. The atmospheric deposition flux follows the order urban area (95.6 g m⁻²·a⁻¹) > suburban area (80.2 g m⁻²·a⁻¹) > forestland (56.8 g m⁻²·a⁻¹). The concentrations of heavy metals in atmospheric deposition show trends of high values in the winter and low values in the summer and are significantly negatively correlated with distance from the city. The pollution level of Igₑₒ-Cd is 6, which is very high, and that of E-Cd is 219, which means high risk. Heavy metals in atmospheric deposition are mainly taken up via hand-mouth intake, and the harm to children is significantly higher than the harm to adults. The highest health risk assessment values for the four analyzed heavy metals in atmospheric deposition are located near the city and in suburbs (within 5 km of the city center), that is, in areas where human activities are concentrated. The health risk assessment values in areas outside the suburbs are low; these areas are less affected by human activities. The health risk assessment values of heavy metals in the winter and spring are higher than those in the summer and autumn. The Pb isotope ratios show that the main sources of heavy metals in atmospheric deposition and local soil are human activities, such as industry and coal combustion, with less input from natural sources. Heavy metals in atmospheric deposition in the western part of Taihu Lake not only directly threaten local human health but also enter Taihu Lake, posing a serious threat to the Taihu Lake ecosystem.
显示更多 [+] 显示较少 [-]Potential for developing independent daytime/nighttime LUR models based on short-term mobile monitoring to improve model performance 全文
2021
Xu, Xiangyu | Qin, Ning | Yang, Zhenchun | Liu, Yunwei | Cao, Suzhen | Zou, Bin | Jin, Lan | Zhang, Yawei | Duan, Xiaoli
Land use regression model (LUR) is a widespread method for predicting air pollution exposure. Few studies have explored the performance of independently developed daytime/nighttime LUR models. In this study, fine particulate matter (PM₂.₅), inhalable particulate matter (PM₁₀), and nitrogen dioxide (NO₂) concentrations were measured by mobile monitoring during non-heating and heating seasons in Taiyuan. Pollutant concentrations were higher in the nighttime than the daytime, and higher in the heating season than the non-heating season. Daytime/nighttime and full-day LUR models were developed and validated for each pollutant to examine variations in model performance. Adjusted coefficients of determination (adjusted R²) for the LUR models ranged from 0.53–0.87 (PM₂.₅), 0.53–0.85 (PM₁₀), and 0.33–0.67 (NO₂). The performance of the daytime/nighttime LUR models for PM₂.₅ and PM₁₀ was better than that of the full-day models according to the results of model adjusted R² and validation R². Consistent results were confirmed in the non-heating and heating seasons. Effectiveness of developing independent daytime/nighttime models for NO₂ to improve performance was limited. Surfaces based on the daytime/nighttime models revealed variations in concentrations and spatial distribution. In conclusion, the independent development of daytime/nighttime LUR models for PM₂.₅/PM₁₀ has the potential to replace full-day models for better model performance. The modeling strategy is consistent with the residential activity patterns and contributes to achieving reliable exposure predictions for PM₂.₅ and PM₁₀. Nighttime could be a critical exposure period, due to high pollutant concentrations.
显示更多 [+] 显示较少 [-]Random forest model based fine scale spatiotemporal O3 trends in the Beijing-Tianjin-Hebei region in China, 2010 to 2017 全文
2021
Ma, Runmei | Ban, Jie | Wang, Qing | Zhang, Yayi | Yang, Yang | He, Mike Z. | Li, Shenshen | Shi, Wenjiao | Li, Tiantian
Ambient ozone (O₃) concentrations have shown an upward trend in China and its health hazards have also been recognized in recent years. High-resolution exposure data based on statistical models are needed. Our study aimed to build high-performance random forest (RF) models based on training data from 2013 to 2017 in the Beijing-Tianjin-Hebei (BTH) region in China at a 0.01 ° × 0.01 ° resolution, and estimated daily maximum 8h average O₃ (O₃-8hmax) concentration, daily average O₃ (O₃-mean) concentration, and daily maximum 1h O₃ (O₃-1hmax) concentration from 2010 to 2017. Model features included meteorological variables, chemical transport model output variables, geographic variables, and population data. The test-R² of sample-based O₃-8hmax, O₃-mean and O₃-1hmax models were all greater than 0.80, while the R² of site-based and date-based model were 0.68–0.87. From 2010 to 2017, O₃-8hmax, O₃-mean, and O₃-1hmax concentrations in the BTH region increased by 4.18 μg/m³, 0.11 μg/m³, and 4.71 μg/m³, especially in more developed regions. Due to the influence of weather conditions, which showed high contribution to the model, the long-term spatial distribution of O₃ concentrations indicated a similar pattern as altitude, where high concentration levels were distributed in regions with higher altitude.
显示更多 [+] 显示较少 [-]Spatio-temporal characteristics of air pollutants over Xinjiang, northwestern China 全文
2021
Rupakheti, Dipesh | Yin, Xiufeng | Rupakheti, Maheswar | Zhang, Qianggong | Li, Ping | Rai, Mukesh | Kang, Shichang
To understand the characteristics of particulate matter (PM) and other air pollutants in Xinjiang, a region with one of the largest sand-shifting deserts in the world and significant natural dust emissions, the concentrations of six air pollutants monitored in 16 cities were analyzed for the period January 2013–June 2019. The annual mean PM₂.₅, PM₁₀, SO₂, NO₂, CO, and O₃ concentrations ranged from 51.44 to 59.54 μg m⁻³, 128.43–155.28 μg m⁻³, 10.99–17.99 μg m⁻³, 26.27–31.71 μg m⁻³, 1.04–1.32 mg m⁻³, and 55.27–65.26 μg m⁻³, respectively. The highest PM concentrations were recorded in cities surrounding the Taklimakan Desert during the spring season and caused by higher amounts of wind-blown dust from the desert. Coarse PM (PM₁₀₋₂.₅) was predominant, particularly during the spring and summer seasons. The highest PM₂.₅/PM₁₀ ratio was recorded in most cities during the winter months, indicating the influence of anthropogenic emissions in winters. The annual mean PM₂.₅ (PM₁₀) concentrations in the study area exceeded the annual mean guidelines recommended by the World Health Organization (WHO) by a factor of ca. ∼5–6 (∼7–8). Very high ambient PM concentrations were recorded during March 19–22, 2019, that gradually influenced the air quality across four different cities, with daily mean PM₂.₅ (PM₁₀) concentrations ∼8–54 (∼26–115) times higher than the WHO guidelines for daily mean concentrations, and the daily mean coarse PM concentration reaching 4.4 mg m⁻³. Such high PM₂.₅ and PM₁₀ concentrations pose a significant risk to public health. These findings call for the formulation of various policies and action plans, including controlling the land degradation and desertification and reducing the concentrations of PM and other air pollutants in the region.
显示更多 [+] 显示较少 [-]Role of miR164 in the growth of wheat new adventitious roots exposed to phenanthrene 全文
2021
Li, Jinfeng | Zhang, Huihui | Zhu, Jiahui | Shen, Yu | Zeng, Nengde | Liu, Shiqi | Wang, Huiqian | Wang, Jia | Zhan, Xinhua
Polycyclic aromatic hydrocarbons (PAHs), ubiquitous organic pollutants in the environment, can accumulate in humans via the food chain and then harm human health. MiRNAs (microRNAs), a kind of non-coding small RNAs with a length of 18–30 nucleotides, regulate plant growth and development and respond to environmental stress. In this study, it is demonstrated that miR164 can regulate root growth and adventitious root generation of wheat under phenanthrene exposure by targeting NAC (NAM/ATAF/CUC) transcription factor. We observed that phenanthrene treatment accelerated the senescence and death of wheat roots, and stimulated the occurrence of new roots. However, it is difficult to compensate for the loss caused by old root senescence and death, due to the slower growth of new roots under phenanthrene exposure. Phenanthrene accumulation in wheat roots caused to generate a lot of reactive oxygen species, and enhanced lipoxygenase activity and malonaldehyde concentration, meaning that lipid peroxidation is the main reason for root damage. MiR164 was up-regulated by phenanthrene, enhancing the silence of NAC1, weakening the association with auxin signal, and inhibiting the occurrence of adventitious roots. Phenanthrene also affected the expression of CDK (the coding gene of cyclin-dependent kinase) and CDC2 (a gene regulating cell division cycle), the key genes in the cell cycle of pericycle cells, thereby affecting the occurrence and growth of lateral roots. In addition, NAM (a gene regulating no apical meristem) and NAC23 may also be related to the root growth and development in wheat exposed to phenanthrene. These results provide not only theoretical basis for understanding the molecular mechanism of crop response to PAHs accumulation, but also knowledge support for improving phytoremediation of soil or water contaminated by PAHs.
显示更多 [+] 显示较少 [-]Untangling radiocesium dynamics of forest-stream ecosystems: A review of Fukushima studies in the decade after the accident 全文
2021
Sakai, Masaru | Tsuji, Hideki | Ishii, Yumiko | Ozaki, Hirokazu | Takechi, Seiichi | Jo, Jaeick | Tamaoki, Masanori | Hayashi, Seiji | Gomi, Takashi
Forest-stream ecosystems are widespread and biodiverse terrestrial landscapes with physical and social connections to downstream human activities. After radiocesium is introduced into these ecosystems, various material flows cause its accumulation or dispersal. We review studies conducted in the decade after the Fukushima nuclear accident to clarify the mechanisms of radiocesium transfer within ecosystems and to downstream areas through biological, hydrological, and geomorphological processes. After its introduction, radiocesium is heavily deposited in the organic soil layer, leading to persistent circulation due to biological activities in soils. Some radiocesium in soils, litter, and organisms is transported to stream ecosystems, forming contamination spots in depositional habitats. While reservoir dams function as effective traps, radiocesium leaching from sediments is a continual phenomenon causing re-contamination downstream. Integration of data regarding radiocesium dynamics and contamination sites, as proposed here, is essential for contamination management in societies depending on nuclear power to address the climate crisis.
显示更多 [+] 显示较少 [-]Estimating the dietary exposure and risk of persistent organic pollutants in China: A national analysis 全文
2021
Fan, Xiarui | Wang, Ziwei | Li, Yao | Wang, Hao | Fan, Wenhong | Dong, Zhaomin
Substantial heterogeneities have been found in previous estimations of the risk from dietary exposures to persistent organic pollutants (POPs) in China, mainly due to spatiotemporal variations. To comprehensively evaluate the dietary risks of POPs listed in the Stockholm Convention, more than 27,580 data records from 753 reports published over the last three decades were examined. Respectively, for various food categories, the results obtained for the range of mean concentrations of POPs are as follows: total dichlorodiphenyltrichloroethanes (DDTs: 1.4–27.1 μg/kg), hexachlorocyclohexanes (HCHs: 1.8–29.3 μg/kg), polybrominated diphenyl ethers (PBDEs: 0.046–2.82 μg/kg), polychorinated biphenyls (PCBs: 0.05–7.57 μg/kg), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD&Fs: 2.9–210 pg toxic equivalent (TEQ)/kg), perfluorooctanoic acid (PFOA: 0.02–0.97 μg/kg), perfluoroctane sulfonate (PFOS: 0.00082–2.76 μg/kg) and short-chain chlorinated paraffins (SCCPs: 64–348.92 μg/kg). Temporal decreasing trends were observed for DDTs, HCHs, PBDEs, PCDD&Fs, and PFOA, with no significant change for other POPs. Meanwhile, the estimated daily intake for adults were 75.2 ± 43.6 ng/kg/day for DDTs, 123 ± 87 ng/kg/day for HCHs, 0.37 ± 0.17 pg TEQ/kg/day for PCDD&Fs, 17.8 ± 9.5 ng/kg/day for PCBs, 3.3 ± 1.8 ng/kg/day for PBDEs, 3.6 ± 1.9 ng/kg/day for PFOA, 3.3 ± 2.0 ng/kg/day for PFOS, and 2.5 ± 1.6 μg/kg/day for SCCPs. Furthermore, non-carcinogenic risks were the highest for PCBs (0.89) and PCDD&Fs (0.53), followed by PFOA (0.18), PFOS (0.17), HCHs (0.062), SCCPs (0.025), DDTs (0.0075), and PBDEs (0.00047). These findings illustrated that exposure to POPs declined due to the control policies implemented in China, while the cumulative risk of POPs was still higher than 1, indicating continuous efforts are required to mitigate associated contamination.
显示更多 [+] 显示较少 [-]Ecotoxicological assessment of palm oil mill effluent final discharge by zebrafish (Danio rerio) embryonic assay 全文
2021
Hashiguchi, Yuya | Zakaria, Mohd Rafein | Toshinari, Maeda | Mohd Yusoff, Mohd Zulkhairi | Shirai, Y. (Yoshihito) | Hassan Mohd. Ali,
Most palm oil mills adopted conventional ponding system, including anaerobic, aerobic, facultative and algae ponds, for the treatment of palm oil mill effluent (POME). Only a few mills installed a bio-polishing plant to treat POME further before its final discharge. The present study aims to determine the quality and toxicity levels of POME final discharge from three different mills by using conventional chemical analyses and fish (Danio rerio) embryo toxicity (FET) test. The effluent derived from mill A which installed with a bio-polishing plant had lower values of BOD, COD and TSS at 45 mg/L, 104 mg/L, and 27 mg/L, respectively. Only mill A nearly met the industrial effluent discharge standard for BOD. In FET test, effluent from mill A recorded low lethality and most of the embryos were malformed after hatching (half-maximal effective concentration (EC50) = 20%). The highest toxicity was observed from the effluent of mill B and all embryos were coagulated after 24 h in samples greater than 75% of effluent (38% of half-maximal lethal concentration (LC50) at 96 h). The embryos in the effluent from mill C recorded high mortality after hatching, and the survivors were malformed after 96 h exposure (LC50 = 26%). Elemental analysis of POME final discharge samples showed Cu, Zn, and Fe concentrations were in the range of 0.10–0.32 mg/L, 0.01–0.99 mg/L, and 0.94–4.54 mg/L, respectively and all values were below the effluent permissible discharge limits. However, the present study found these metals inhibited D. rerio embryonic development at 0.12 mg/L of Cu, and 4.9 mg/L of Fe for 96 h-EC50. The present study found that bio-polishing plant installed in mill A effectively removing pollutants especially BOD and the FET test was a useful method to monitor quality and toxicity of the POME final discharge samples.
显示更多 [+] 显示较少 [-]Airborne particulate matter induces oxidative damage, DNA adduct formation and alterations in DNA repair pathways 全文
2021
Quezada-Maldonado, Ericka Marel | Sánchez-Pérez, Yesennia | Chirino, Yolanda I. | García-Cuellar, Claudia M.
Air pollution, which includes particulate matter (PM), is classified in group 1 as a carcinogen to humans by the International Agency for Research in Cancer. Specifically, PM exposure has been associated with lung cancer in patients living in highly polluted cities. The precise mechanism by which PM is linked to cancer has not been completely described, and the genotoxicity induced by PM exposure plays a relevant role in cell damage. In this review, we aimed to analyze the types of DNA damage and alterations in DNA repair pathways induced by PM exposure, from both epidemiological and toxicological studies, to comprehend the contribution of PM exposure to carcinogenesis. Scientific evidence supports that PM exposure mainly causes oxidative stress by reactive oxygen species (ROS) and the formation of DNA adducts, specifically by polycyclic aromatic hydrocarbons (PAH). PM exposure also induces double-strand breaks (DSBs) and deregulates the expression of some proteins in DNA repair pathways, precisely, base and nucleotide excision repairs and homologous repair. Furthermore, specific polymorphisms of DNA repair genes could lead to an adverse response in subjects exposed to PM. Nevertheless, information about the effects of PM on DNA repair pathways is still limited, and it has not been possible to conclude which pathways are the most affected by exposure to PM or if DNA damage is repaired properly. Therefore, deepening the study of genotoxic damage and alterations of DNA repair pathways is needed for a more precise understanding of the carcinogenic mechanism of PM.
显示更多 [+] 显示较少 [-]Environmental microplastic and nanoplastic: Exposure routes and effects on coagulation and the cardiovascular system 全文
2021
Lett, Zachary | Hall, Abigail | Skidmore, Shelby | Alves, Nathan J.
Plastic pollution has been a growing concern in recent decades due to the proliferation and ease of manufacturing of single use plastic products and inadequate waste and recycling management. Microplastic, and even smaller nanoplastic, particles are persistent pollutants in aquatic and terrestrial systems and are the subject of active and urgent research. This review will explore the current research on how exposure to plastic particles occurs and the risks associated from different exposure routes: ingestion, inhalation, and dermal exposure. The effects of microplastics on the cardiovascular system are of particular importance due to its sensitivity and ability to transport particles to other organ systems. The effects of microplastics and nanoplastics on the heart, platelet aggregation, and thrombus formation will all be explored with focus on how the particle characteristics modulate their effect. Plastic particle interactions are highly dependent on both their size and their surface chemistry and interesting research is being done with the interaction of particle characteristics and effect on thrombosis and the cardiovascular system. There is significant uncertainty surrounding some of the findings in this field as research in this area is still maturing. There are undoubtedly more physiological consequences than we are currently aware of resulting from environmental plastic exposure and more studies need to be conducted to reveal the full extent of pathologies caused by the various routes of microplastic exposure, with particular emphasis on longitudinal exposure effects. Further research will allow us to recognize the full extent of physiological impact and begin developing viable solutions to reduce plastic pollution and potentially design interventions to mitigate in-vivo plastic effects following significant or prolonged exposure.
显示更多 [+] 显示较少 [-]