细化搜索
结果 1261-1270 的 4,937
Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors 全文
2019
Sayahi, T. | Kaufman, D. | Becnel, T. | Kaur, K. | Butterfield, A. | Collingwood, S. | Zhang, Y. | Gaillardon, P.-E. | Kelly, K.E.
Low-cost particulate matter (PM) air quality sensors are becoming widely available and are being increasingly deployed in ambient and home/workplace environments due to their low cost, compactness, and ability to provide more highly resolved spatiotemporal PM concentrations. However, the PM data from these sensors are often of questionable quality, and the sensors need to be characterized individually for the environmental conditions under which they will be making measurements. In this study, we designed and assessed a cost-effective (∼$700) calibration chamber capable of continuously providing a uniform PM concentration simultaneously to multiple low-cost PM sensors and robust calibration relationships that are independent of sensor position. The chamber was designed and evaluated with a Computational Fluid Dynamics (CFD) model and a rigorous experimental protocol. We then used this new chamber to calibrate 242 Plantower PMS 3003 sensors from two production lots (Batches I and II) with two aerosol types: ammonium nitrate (for Batches I and II) and alumina oxide (for Batch I). Our CFD models and experiments demonstrated that the chamber is capable of providing uniform PM concentration to 8 PM sensors at once within 6% error and with excellent reliability (intraclass correlation coefficient > 0.771). The study identified two malfunctioning sensors and showed that the remaining sensors had high linear correlations with a DustTrak monitor that was calibrated for each aerosol type (R2 > 0.978). Finally, the results revealed statistically significant differences between the responses of Batches I and II sensors to the same aerosol (P-value<0.001) and the Batch I sensors to the two different aerosol types (P-value<0.001). This chamber design and evaluation protocol can provide a useful tool for those interested in systematic laboratory characterization of low-cost PM sensors.
显示更多 [+] 显示较少 [-]Toxicokinetic−toxicodynamic modeling of cadmium and lead toxicity to larvae and adult zebrafish 全文
2019
Gao, Yongfei | Zhang, Yan | Feng, Jianfeng | Zhu, Lin
Toxicity of hazard materials to organism is different between larvae and adult zebrafish. However, this different effect was seldom considered in toxicological modeling. Here, we measured Cd and Pb toxicity for larvae and adult zebrafish (Danio rerio) and assessed whether metal toxicity can be better simulated by the one-compartment or two-compartment toxicokinetic (TK) and toxicodynamic (TD) models with assumption of stochastic death (SD) and individual tolerance (IT), respectively. Results showed that, for larvae, the one-compartment model generally fitted the observed accumulation and survival better than two-compartment model. In contrast, for adult, the two-compartment model simulation satisfied the observed accumulation and survival better than one-compartment model. In addition, both the SD and the IT models generally described the Cd or Pb toxicity well, although the IT model predictions were slightly better than the SD model in adult fish, the opposite phenomenon was observed in larvae. Our results suggested that variations in both TK and TD parameters might be needed to quantify the toxicity sensitivity in larvae and adult zebrafish, and accounting these variations in mechanistic toxicological effect models (e.g. TK-TD) will allow more accurate predictions of hazard materials effects to organisms.
显示更多 [+] 显示较少 [-]Environmentally relevant concentrations of arsenite induces developmental toxicity and oxidative responses in the early life stage of zebrafish 全文
2019
Sun, Hong-Jie | Zhang, Jing-Ying | Wang, Qiang | Zhu, Engao | Chen, Wenrong | Lin, Hongjun | Chen, Jianrong | Hong, Huachang
Arsenic (As) present in water is a nonignorable environmental issue, even at low concentrations (≤150 μg L⁻¹). To evaluate the toxic effect of low concentrations of As, zebrafish at early life stage were exposed to 0, 25, 50, 75, or 150 μg L⁻¹ AsIII for 120 h. Our results indicated that low concentration of AsIII decreased zebrafish larvae’s survival rate to 85%, 89% and 86% at 50, 75 and 150 μg L⁻¹. Furthermore, low concentrations of AsIII exposure caused oxidative stress (elevated superoxide dismutase (SOD) activity and influenced the mRNA transcriptional levels of Cu/ZnSOD and MnSOD) and damage (increased malondialdehyde levels). Meanwhile, zebrafish larvae regulated the mRNA transcription of metallothionein and heat shock protein 70 to alleviate toxicity caused by AsIII. These results revealed lower concentrations (≤150 μg L⁻¹) of AsIII had a detriment effect on the survival of fish at early life stage, moreover, oxidative stress caused by AsIII posed potential risk for the zebrafish. This study provides novel insight into low concentration AsIII-induced toxicity in zebrafish.
显示更多 [+] 显示较少 [-]Spectroscopic investigation of Cu2+, Pb2+ and Cd2+ adsorption behaviors by chitosan-coated argillaceous limestone: Competition and mechanisms 全文
2019
Zhang, Zhen | He, Shuran | Zhang, Yulong | Zhang, Kun | Wang, Jinjin | Jing, Ran | Yang, Xingjian | Hu, Zheng | Lin, Xiaojing | Li, Yongtao
In the present study, the competitive adsorption of Cu²⁺, Pb²⁺, and Cd²⁺ by a novel natural adsorbent (i.e., argillaceous limestone) modified with chitosan (C-AL) was investigated. The results demonstrated that both intraparticle diffusion and chemisorption marked significant contributions to the Cu²⁺ adsorption process by both raw argillaceous limestone (R-AL) and C-AL in mono-metal adsorption systems. Antagonism was found to be the predominant competitive effect for Cu²⁺, Pb²⁺ and Cd²⁺ adsorptions by C-AL in the multi-metal adsorption system. The three-dimensional simulation and FTIR analysis revealed that the presence of Cu²⁺ suppressed Pb²⁺ and Cd²⁺ adsorptions, while the effect of Cd²⁺ on Cu²⁺ and Pb²⁺ adsorptions was insignificant. The spectroscopic analyses evidenced that amide groups in C-AL played a crucial role in metal adsorption. The preferential adsorptions of Pb²⁺ > Cu²⁺ > Cd²⁺ were likely due to the different affinities of the metals to the lone pair of electrons on the N atom from the amide groups and/or the O atoms from the –OH and -COO⁻ groups on C-AL. The interactions between C-AL and metal ions and between various metal species influenced their competitive adsorption behaviors. C-AL exhibited a superior metal adsorption capacity in comparison with that the capacities of other natural adsorbents reported during the last decade, suggesting its potential practical applications.
显示更多 [+] 显示较少 [-]Maternal exposure to fipronil results in sulfone metabolite enrichment and transgenerational toxicity in zebrafish offspring: Indication for an overlooked risk in maternal transfer? 全文
2019
Xu, Chao | Niu, Lili | Liu, Jinsong | Sun, Xiaohui | Zhang, Chaonan | Ye, Jing | Liu, Weiping
Ecotoxicological studies show the association between pesticide pollution and transgenerational toxicity in aquatic organisms. However, a less considered risk is that many pesticides can be metabolized and transferred to offspring as new toxicants. In this study, we used zebrafish to evaluate the maternal transfer risk of fipronil (FIP), which is a great threat to aquatic organisms with toxic metabolite formation. After 28-day exposure to environmentally relevant concentrations (1.0, 5.0 and 10.0 μg/L) of FIP in adult female zebrafish (F0), the toxicants off-loading and transgenerational toxicity in offspring were studied. High burdens of FIP and its sulfone metabolite were found in both F0 and the embryos (F1), resulting in increased CYP450 activity. The residual levels of the metabolite were higher than those of the parent compound. Chiral analysis further showed a preferential accumulation of S-enantiomer of FIP in both F0 and F1. Maternal exposure to FIP increased the malformation rate and decreased the swim speed in larvae. Additionally, after exposure, the levels of thyroid hormones (THs), including triiodothyronine (T3) and thyroxine (T4), decreased in both generations, particularly in the F1. Gene transcription expression along the hypothalamic-pituitary-thyroid (HPT) axis was also significantly affected. Maternal exposure to FIP increased sulfone metabolite enrichment and cause multiple toxic effects in F1. Findings from this study highlight the key role of biologically active product formation in the maternal transfer of pollutants and associated risk assessment.
显示更多 [+] 显示较少 [-]Aircraft soot from conventional fuels and biofuels during ground idle and climb-out conditions: Electron microscopy and X-ray micro-spectroscopy 全文
2019
Liati, A. | Schreiber, D. | Alpert, P.A. | Liao, Y. | Brem, B.T. | Corral Arroyo, P. | Hu, J. | Jonsdottir, H.R. | Ammann, M. | Dimopoulos Eggenschwiler, P.
Aircraft soot has a significant impact on global and local air pollution and is of particular concern for the population working at airports and living nearby. The morphology and chemistry of soot are related to its reactivity and depend mainly on engine operating conditions and fuel-type. We investigated the morphology (by transmission electron microscopy) and chemistry (by X-ray micro-spectroscopy) of soot from the exhaust of a CFM 56-7B26 turbofan engine, currently the most common engine in aviation fleet, operated in the test cell of SR Technics, Zurich airport. Standard kerosene (Jet A-1) and a biofuel blend (Jet A-1 with 32% HEFA) were used at ground idle and climb-out engine thrust, as these conditions highly influence air quality at airport areas. The results indicate that soot reactivity decreases from ground idle to climb-out conditions for both fuel types. Nearly one third of the primary soot particles generated by the blended fuel at climb-out engine thrust bear an outer amorphous shell implying higher reactivity. This characteristic referring to soot reactivity needs to be taken into account when evaluating the advantage of HEFA blending at high engine thrust. The soot type that is most prone to react with its surrounding is generated by Jet A-1 fuel at ground idle. Biofuel blending slightly lowers soot reactivity at ground idle but does the opposite at climb-out conditions. As far as soot reactivity is concerned, biofuels can prove beneficial for airports where ground idle is a common situation; the benefit of biofuels for climb-out conditions is uncertain.
显示更多 [+] 显示较少 [-]A multivariate approach of changes in filamentous, nitrifying and protist communities and nitrogen removal efficiencies during ozone dosage in a full-scale wastewater treatment plant 全文
2019
Barbarroja, Paula | Zornoza, Andrés | Aguado, Daniel | Borrás, Luis | Alonso, José Luis
The application of low ozone dosage to minimize the problems caused by filamentous foaming was evaluated in two bioreactors of an urban wastewater treatment plant. Filamentous and nitrifying bacteria, as well as protist and metazoa, were monitored throughout a one-year period by FISH and conventional microscopy to examine the effects of ozone application on these specific groups of microorganisms. Multivariate data analysis was used to determine if the ozone dosage was a key factor determining the low carbon and nitrogen removal efficiencies observed throughout the study period, as well as to evaluate its impact on the biological communities monitored. The results of this study suggested that ozonation did not significantly affect the COD removal efficiency, although it had a moderate effect on ammonia removal efficiency. Filamentous bacteria were the community most influenced by ozone (24.9% of the variance explained by ozone loading rate), whilst protist and metazoa were less affected (11.9% of the variance explained). Conversely, ozone loading rate was not a factor in determining the nitrifying bacterial community abundance and composition, although this environmental variable was correlated with ammonia removal efficiency. The results of this study suggest that different filamentous morphotypes were selectively affected by ozone.
显示更多 [+] 显示较少 [-]Synergetic effects of novel aromatic brominated and chlorinated disinfection byproducts on Vibrio qinghaiensis sp.-Q67 全文
2019
Chen, Yu-Han | Qin, Li-Tang | Mo, Ling-Yun | Zhao, Dan-Na | Zeng, Hong-Hu | Liang, Yan-Peng
Aromatic halogenated chemicals are an unregulated class of byproducts (DBPs) generated from disinfection processes in the water environment. Information on the toxicological interactions, such as antagonism and synergism, present in DBP mixtures remains limited. This study aimed to determine the toxicological effects of aromatic halogenated DBP mixtures on the freshwater bacterium Vibrio qinghaiensis sp.-Q67. The acute toxicities of seven DBPs and their binary mixtures toward V. qinghaiensis sp.-Q67 were determined through microplate toxicity analysis. The toxicities of single DBPs were ranked as follows: 2,5-dibromohydroquinone > 2,4-dibromophenol > 4-bromo-2-chlorophenol ≈ 2,6-dibromo-4-nitrophenol > 2,6-dichloro-4-nitrophenol > 2-bromo-4-chlorophenol > 4-bromophenol. The percentages of synergism (experimental values higher than the predicted concentration addition) on the levels of 50%, 20%, and 10% effective concentrations reached 61%, 41%, and 31%, respectively. These results indicated that the probability of synergism decreased as concentration levels decreased. The synergetic effects of the compounds were dependent on concentration levels and concentration ratios. The proposed quantitative structure–activity relationship model can be used to predict the interactive toxicities exerted by 105 binary DBP mixture rays of 21 DBP mixture systems.
显示更多 [+] 显示较少 [-]Response of benthic macrofauna to multiple anthropogenic pressures in the shallow coastal zone south of Sfax (Tunisia, central Mediterranean Sea) 全文
2019
Mosbahi, Nawfel | Serbaji, Mohamed Moncef | Pezy, Jean-Philippe | Neifar, Lassad | Dauvin, Jean-Claude
Anthropogenic activities including coastal industries, urbanization, extensive agriculture and aquaculture as well as their cumulative impacts represent major sources of perturbation of marine coastal systems. Macrobenthic communities are useful ecological indicators for monitoring the health status of marine environments (or polluted environments). The present study reports, for the first time, the response of benthic macrofauna sampled during two years survey (2015–2016) to multiple anthropogenic pressures on the coastal zone south of Sfax (Tunisia). A total of 12 stations were monitored seasonally at locations downstream from the main potential sources of disturbance. 106 macrobenthos taxa, belonging to six animal phyla and 70 families, were identified with a dominance of polychaetes (42%), crustaceans (35%) and molluscs (18%). We used an ANOVA test and cluster analysis to identify spatial gradient linked to environmental and anthropogenic factors, including depth, sedimentary texture and anthropogenic activities (i.e. phosphogypsum discharges).The macrofauna present lowest species number and abundance on stations undergoing anthropogenic inputs, which are extremely polluted by heavy metals (Cd, Cu, F and N) and excess of organic matter. Univariate parameters reveal a general trend of increasing species diversity with increasing distance from the pollution source. The polluted stations are strongly dominated by carnivores, and selective deposit feeders, and more closely linked to the availability of trophic resources than to anthropogenic constraints. The seasonal changes in macrobenthic abundance, diversity indices and community structure are mainly linked to the biological cycle (e.g. recruitment events) of the dominant species. Biotic indices (AMBI and BO2A) classified the coastal zone south of Sfax as moderate and good ecological status. This study suggests that initiating a long-term monitoring programme would improve our understanding of the temporal changes of macrobenthic communities of this ecosystem, contributing to the assessment of effective management and conservation measures in this disturbed area.
显示更多 [+] 显示较少 [-]Prenatal exposure to diesel exhaust PM2.5 programmed non-alcoholic fatty liver disease differently in adult male offspring of mice fed normal chow and a high-fat diet 全文
2019
Wang, Xiaoke | Yang, Yuxue | Zhu, Piaoyu | Wu, Yifan | Jin, Yang | Yu, Shali | Wei, Haiyan | Qian, Muzhou | Cao, Weiming | Xu, Shenya | Liu, Yingqi | Chen, Gang | Zhao, Xinyuan
Air pollution is one of the leading preventable threats to public health. Emerging evidence indicates that exposure to environmental stressors is associated with abnormal foetal development. However, how prenatal exposure to diesel exhaust PM2.5 (DEP) predisposes adult offspring to the development of non-alcoholic fatty liver disease (NAFLD) remains unclear. To examine this, C57BL/6J mice were exposed to DEP or a vehicle before conception and during pregnancy and fed normal chow or a high-fat diet. Then, the hepatic fatty accumulation in the adult male offspring and possible molecular mechanisms were assessed. Our data showed that prenatal exposure to DEP on normal chow led to hepatic steatosis in adult male offspring with normal liver function. However, prenatal DEP exposure relieved the hepatic steatosis and liver function in offspring of mice fed a high-fat diet. Furthermore, prenatal exposure to DEP on normal chow increased lipogenesis and worsened fatty acid oxidation. The counteractive effect of prenatal DEP exposure on high-fat-diet-induced hepatic steatosis was produced through upregulated adenosine 5′-monophosphate-activated protein kinase, and this improved lipogenesis and fatty acid oxidation. Collectively, prenatal exposure to DEP programmed the development of NAFLD differently in the adult male offspring of mice fed normal chow and a high-fat diet, showing the pleotrophic effects of exposure to adverse environmental factors in early life.
显示更多 [+] 显示较少 [-]