细化搜索
结果 1271-1280 的 1,540
Evolutions of microbial degradation pathways for parent xenobiotic and for its metabolites follow different schemes
2012
Chong, Nyuk-Min | Chang, Chun-Shuo | Tsai, Shiu-Ching
BACKGROUND AND PURPOSES: The pathways used by microorganisms for the metabolism of every xenobiotic substrate are specific. The catabolism of a xenobiotic goes through a series of intermediate steps and lower intermediates (metabolites) appear in sequence. The structure of the metabolites can be similar to the parents due to kinship. The purposes of this study were to examine if the degradation pathways that were developed for a parent xenobiotic are effective to degrade the parent’s lower metabolites, and if the reverse is true. MATERIALS AND METHODS: The xenobiotic substrates, 2,4-dichlorophenoxyacetic acid (2,4-D, the parent xenobiotic) and its metabolite 2,4-dichlorophenol (2,4-DCP), were independently subjected to acclimation and degradation tests by the biomasses of mixed-culture activated sludge and a pure culture of Arthrobacter sp. RESULTS: Activated sludge and Arthrobacter sp. that were acclimated to 2,4-D effectively degraded 2,4-D and the lower metabolites of 2,4-D, typically 2,4-DCP. During the degradation of 2,4-D, accumulations of the lower metabolites of 2,4-D were not found. The degradation pathways acquired from acclimation to 2,4-D are effective for all the metabolites of 2,4-D. However, pathways acquired from acclimation to 2,4-DCP are not effective in the degradation of the parent 2,4-D. CONCLUSIONS: Microorganisms acclimated to 2,4-D evolve their degradation pathways by a scheme that is different from the scheme the microorganisms employ when they are acclimated to the metabolites of 2,4-D.
显示更多 [+] 显示较少 [-]Long-term trends of continental-scale PCB patterns studied using a global atmosphere–ocean general circulation model
2012
Stemmler, Irene | Lammel, Gerhard
Continental-scale distribution and inter-continental transport of four polychlorinated biphenyl (PCB) congeners (28, 101, 153, 180) from 1950 to 2010 were studied using the global multicompartment chemistry transport model MPI-MCTM. Following identical primary emissions for all PCB congeners into air, most of the burden is stored in terrestrial (soil and vegetation) compartments. Thereby, PCB-28, PCB-101 and PCB-153 show a shift of the soil burden maxima from source to remote regions. This shift is downwind with regard to the westerlies for Eurasia and upwind for North America and more prominent for the lighter PCBs than for PCB-153 or PCB-180. In meridional direction, all congeners’ distributions underwent a northward migration in Eurasia and North America since the 1950s. Inter-continental transport from Eurasian sources accounts largely for contamination of Alaska and British Columbia and determines the migration of the PCB distribution in soil in North America. Trans-Pacific transport occurs mainly in the gas phase in boreal winter (December–January–February) at 3–4 km altitude and is on a multi-year time scale strongly linked to the atmospheric pressure systems over the Pacific. Inter-continental transport of the lighter, more volatile PCBs is more efficient than for the heavier PCBs.
显示更多 [+] 显示较少 [-]Improvement of sampling strategies for randomly distributed hotspots in soil applying a computerized simulation considering the concept of uncertainty
2012
Hildebrandt, Thomas | Pick, Denis | Einax, Jürgen W.
INTRODUCTION: The pollution of soil and environment as a result of human activity is a major problem. Nowadays, the determination of local contaminations is of interest for environmental remediation. These hotspots can have various toxic effects on plants, animals, humans, and the whole ecological system. However, economical and juridical consequences are also possible, e.g., high costs for remediation measures. MATERIALS AND METHODS: In this study three sampling strategies (simple random sampling, stratified sampling, and systematic sampling) were applied on randomly distributed hotspot contaminations to prove their efficiency in term of finding hotspots. The results were used for the validation of a computerized simulation. RESULTS AND CONCLUSION: This application can simulate the contamination on a field, the sampling pattern, and a virtual sampling. A constant hit rate showed that none of the sampling patterns could reach better results than others. Furthermore, the uncertainty associated with the results is described by confidence intervals. It is to be considered that the uncertainty during sampling is enormous and will decrease slightly, even the number of samples applied was increased to an unreasonable amount. It is hardly possible to identify the exact number of randomly distributed hotspot contaminations by statistical sampling. But a range of possible results could be calculated. Depending on various parameters such as shape and size of the area, number of hotspots, and sample quantity, optimal sampling strategies could be derived. Furthermore, an estimation of bias arising from sampling methodology is possible. The developed computerized simulation is an innovative tool for optimizing sampling strategies in terrestrial compartments for hotspot distributions.
显示更多 [+] 显示较少 [-]Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: kinetic and thermodynamic studies
2012
Karthikeyan, S. | Ezhil Priya, M. | Boopathy, R. | Velan, M. | Mandal, A. B. | Sekaran, G.
BACKGROUND, AIM, SCOPE: Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst. MATERIALS AND METHODS: Ferrous sulfate (FeSO4·7H2O), sulfuric acid (36 N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50 cm and diameter 6 cm, were fabricated with PVC while one reactor was packed with MAC of mass 150 g and other without MAC served as control. RESULTS AND DISCUSSION: The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89 kJ/mol, respectively. The thermodynamic parameters ΔG, ΔH, and ΔS were calculated for the oxidation processes using Van’t Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV–visible spectroscopy, and cyclic voltammetry. CONCLUSIONS: The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time–4 h, and H2O2/FeSO4·7H2O in the molar ratio of 2:1.
显示更多 [+] 显示较少 [-]Biodegradation of benzene, toluene, and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium
2012
Mukherjee, Ashis K. | Bordoloi, Naba K.
PURPOSE: The major aromatic constituents of petroleum products viz. benzene, toluene, and mixture of xylenes (BTX) are responsible for environmental pollution and inflict serious public concern. Therefore, BTX biodegradation potential of individual as well as formulated bacterial consortium was evaluated. This study highlighted the role of hydrogen peroxide (H2O2), nitrate, and phosphate in stimulating the biodegradation of BTX compounds under hypoxic condition. MATERIALS AND METHODS: The individual bacterium viz. Bacillus subtilis DM-04 and Pseudomonas aeruginosa M and NM strains and a consortium comprising of the above bacteria were inoculated to BTX-containing liquid medium and in soil. The bioremediation experiment was carried out for 120 h in BTX-containing liquid culture and for 90 days in BTX-contaminated soil. The kinetics of BTX degradation either in presence or absence of H2O2, nitrate, and phosphate was analyzed using biochemical and gas chromatographic (GC) technique. RESULTS: Bacterial consortium was found to be superior in degrading BTX either in soil or in liquid medium as compared to degradation of same compounds by individual strains of the consortium. The rate of BTX biodegradation was further enhanced when the liquid medium/soil was exogenously supplemented with 0.01 % (v/v) H2O2, phosphate, and nitrate. The GC analysis of BTX biodegradation (90 days post-inoculation) in soil by bacterial consortium confirmed the preferential degradation of benzene compared to m-xylene and toluene. CONCLUSIONS: It may be concluded that the bacterial consortium in the present study can degrade BTX compounds at a significantly higher rate as compared to the degradation of the same compounds by individual members of the consortium. Further, addition of H2O2 in the culture medium as an additional source of oxygen, and nitrate and phosphate as an alternative electron acceptor and macronutrient, respectively, significantly enhanced the rate of BTX biodegradation under oxygen-limited condition.
显示更多 [+] 显示较少 [-]Detection of antibacterial-like activity on a silica surface: fluoroquinolones and their environmental metabolites
2012
Lewis, Gareth | Juhasz, Albert | Smith, Euan
BACKGROUND, SCOPE, AND AIMS: Antibacterial fluoroquinolones (FQs) are third-generation antibiotics that are commonly used as therapeutic treatments of respiratory and urinary tract infections. They are used far less in intensively farmed animal production systems, though their use may be permitted in the veterinary treatments of flocks or in medicated feeds. When used, only a fraction of ingested parent FQ actually reaches the in vivo target site of infection, while the remainder is excreted as the parent FQ and its metabolized products. In many species’ metabolism, enrofloxacin (EF) is converted into ciprofloxacin (CF) while both FQs are classified as parent FQs in human treatments. It is therefore likely that both FQs and their metabolic products will contribute to a common pool of metabolites in biological wastes. Wastes from intensive farming practices are either directly applied to agricultural land without treatment or may be temporarily stored prior to disposal. However, human waste is treated in sewage treatment plants (STPs) where it is converted into biosolids. In the storage or treatment process of STPs, FQs and their in vivo metabolites are further converted into other environmental metabolites (FQEMs) by ex vivo physicochemical processes that act and interact to produce complex mixtures of FQEMs, some of which have antibacterial-like activities. Biosolids are then often applied to agricultural land as a fertilizer amendment where FQs and FQEMs can be further converted into additional FQEMs by soil processes. It is therefore likely that FQ-contaminated biowaste-treated soils will contain complex mixtures of FQEMs, some of which may have antibacterial-like activities that may be expressed on bacteria endemic to the receiving agricultural soil environment. Concern has arisen in the scientific and in the general community that repeated use of FQ-contaminated biowaste as fertilizer amendments of nutrient-impoverished agricultural land may create a selective environment in which FQ-resistant bacteria might grow. The likelihood of this happening will depend, to some extent, on whether bioactive FQEMs are first synthesized from the parent FQs by the action and interaction of in vivo and ex vivo processes producing bioactive FQEMs in biowastes and biosolids. The postulated creation of a selective environment will also depend, in part, on whether such bioactive FQEMs are biologically available to bacteria, which may, in turn, be influenced by soil type, amendment regime, and the persistence of the bioactive FQEMs. Additionally, soil bacteria and soil processes may be affected in different ways or extents by bioactive FQEMs that could possibly act additively or synergistically at ecological targets in these non-target bacteria. This is an important consideration, since, while parent FQs have well-defined ecological targets (DNA gyrase and topoisomerase IV) and modes of bactericidal action, the FQEMs and their possible modes of action on the many different species of soil bacteria is less well studied. It is therefore understandable that there is a lack of conclusive evidence directly attributing biosolid usage to any increase in FQ-resistant bacteria detected in biowaste-amended agricultural soil. However, a lack of evidence may simply imply that a causal relationship between biosolid usage programs and any detection of low levels of FQ-resistant bacteria in soils has yet to be established, rather than an assumption of no relationship whatsoever. Based on results presented in this paper, the precautionary principle should be applied in the usage of FQ-contaminated biosolids as fertilizer amendments of agricultural land. The aim of this research was to test whether any bioactive FQEMs of EF could be synthesized by aerobic fermentation processes using Mycobacterium gilvum (American Tissue Culture Collection) and a mixed culture of microorganisms derived from an agricultural soil. High-performance thin-layer chromatography (HPTLC) and bioautography were tested as screening techniques in the detection and analysis of bioactive FQEMs. MATERIALS AND METHODS: FQEMs derived from M. gilvum and mixed (soil) culture aerobic ferments were fractionated using preparative HPTLC. A standard strain of Escherichia coli was then used as the reporter organism in a bioautography assay in the detection of bioactive-FQEMs on a mid-section of the HPTLC plate. Plate sections were reassembled, and a photograph was taken under low-intensity ultraviolet (UV) light to reveal regions that contained analytes that had UV chromophores and antibacterial-like activities. RESULTS AND DISCUSSION: Many fractionated FQEMs displayed antibacterial-like activity while bound to silica gel HPTLC plates. These results also provide evidence that sufficient quantities of biologically active FQEMs were biologically available from a silica gel surface to prevent the adherent growth of E. coli. Six to seven FQEMs derived from EF using aerobic fermentation processes had antibacterial-like activities, while two FQEMs were also detectable using UV light. Furthermore, similar banding patterns of antibacterial-like activity were observed in both the monoculture (M. gilvum) and mixed culture bioautography assays, indicating that similar processes operated in both aerobic fermentations, either producing similar biologically active FQEMs or biologically active FQEMs that had similar physicochemical properties in both ferments. The simplest explanation for these findings is that the tested agricultural soil also contained mycobacteria that metabolized EF in a similar way to the purchased standard monoculture M. gilvum. Additionally, the marked contrast between the bioautography results and the UV results indicated that the presence of UV chromophores is not a prerequisite for the detection of antibacterial-like activity. CONCLUSIONS: A reliance on spectrophotometric techniques in the detection of bioactive FQEMs in the environment may underestimate component antibacterial-like activity and, possibly, total antibacterial-like activity expressed by EF and its FQEMs. The described bioautography method provides a screening technique with which antibacterial-like activities derived from EF and possibly other FQs can be detected directly on silica gel HPTLC plates. RECOMMENDATIONS: It is recommended that both bioassay and instrumental analytical techniques be used in any measurement of hazard and risk relating to antibacterial-like activities in the environment that are derived from fluoroquinolone antibiotics and their environmental metabolites.
显示更多 [+] 显示较少 [-]Inactivation of bacteria under visible light and in the dark by Cu films. Advantages of Cu-HIPIMS-sputtered films
2012
Ehiasarian, A. | Pulgarin, Cesar | Kiwi, John
INTRODUCTION: The Cu polyester thin-sputtered layers on textile fabrics show an acceptable bacterial inactivation kinetics using sputtering methods. MATERIALS AND METHODS: Direct current magnetron sputtering (DCMS) for 40 s of Cu on cotton inactivated Escherichia coli within 30 min under visible light and within 120 min in the dark. For a longer DCMS time of 180 s, the Cu content was 0.294% w/w, but the bacterial inactivation kinetics under light was observed within 30 min, as was the case for the 40-s sputtered sample. RESULTS AND DISCUSSION: This observation suggests that Cu ionic species play a key role in the E. coli inactivation and these species were further identified by X-ray photoelectron spectroscopy (XPS). The 40-s sputtered samples present the highest amount of Cu sites held in exposed positions interacting on the cotton with E. coli. Cu DC magnetron sputtering leads to thin metallic semi-transparent gray–brown Cu coating composed by Cu nanoparticulate in the nanometer range as found by electron microscopy (EM). Cu cotton fabrics were also functionalized by bipolar asymmetric DCMSP. CONCLUSION: Sputtering by DCMS and DCMSP for longer times lead to darker and more compact Cu films as detected by diffuse reflectance spectroscopy and EM. Cu is deposited on the polyester in the form of Cu2O and CuO as quantified by XPS. The redox interfacial reactions during bacterial inactivation involve changes in the Cu oxidation states and in the oxidation intermediates and were followed by XPS. High-power impulse magnetron sputtering (HIPIMS)-sputtered films show a low rugosity indicating that the texture of the Cu nanoparticulate films were smooth. The values of R q and R a were similar before and after the E. coli inactivation providing evidence for the stability of the HIPIMS-deposited Cu films. The Cu loading percentage required in the Cu films sputtered by HIPIMS to inactivate E. coli was about three times lower compared to DCMS films. This indicates a substantial Cu metal savings within the preparation of antibacterial films.
显示更多 [+] 显示较少 [-]Urban transformation of a metropolis and its environmental impacts : A case study in Shanghai
2012
Tian, Zhan | Cao, Guiying | Shi, Jun | McCallum, Ian | Cui, Linli | Fan, Dongli | Li, Xinhu
PURPOSE: The aim of this paper is to understand the sustainability of urban spatial transformation in the process of rapid urbanization, and calls for future research on the demographic and economic dimensions of climate change. Shanghai towards its transformation to a metropolis has experienced vast socioeconomic and ecological change and calls for future research on the impacts of demographic and economic dimensions on climate change. We look at the major questions (1) to explore economic and demographic growth, land use and land-cover changes in the context of rapid economic and city growth, and (2) to analyze how the demography and economic growth have been associated with the local air temperature and vegetation. METHOD: We examine urban growth, land use and land-cover changes in the context of rapid economic development and urbanization. We assess the impact of urban expansion on local air temperature and vegetation. The analysis is based on time series data of land use, normalized difference vegetation index (NDVI), and meteorological, demographic and economic data. RESULTS AND DISCUSSION: The results indicate that urban growth has been driven by mass immigration; as a consequence of economic growth and urban expansion, a large amount of farmland has been converted to paved road and residential buildings. Furthermore, the difference between air temperature in urban and exurban areas has increased rapidly. The decrease of high mean annual NDVI has mainly occurred around the dense urban areas.
显示更多 [+] 显示较少 [-]Genotoxicity associated with oxidative damage in the liver and kidney of mice exposed to dimethoate subchronic intoxication
2012
Ayed-Boussema, Imen | Rjiba, Karima | Moussa, Amal | Mnasri, Nourhène | Bacha, Hassen
BACKGROUND AND AIMS: Because of the widespread use of pesticides for domestic and industrial applications, the evaluation of their toxic effects is of major concern to public health. The aim of the present study was to investigate the propensity of dimethoate (DM), an organophosphorus pesticide, to cause oxidative damage in the liver and kidney of mice and its associated genotoxic effect. METHODS: DM was administered intraperitoneally at doses of 1, 5, 10, 15, and 30 mg/kg body weight for 30 consecutive days in BALB/c mice. Oxidative stress was monitored in the kidney and liver by measuring malondialdehyde level, protein carbonyl concentration, and the catalase activity. The genotoxicity of DM was assessed by the comet assay in vivo. RESULTS AND DISCUSSION: Our results indicated that DM inhibited acetylcholinesterase activities in the liver and kidney of treated mice. DM increased lipid peroxidation and protein carbonyl levels in the liver and kidney in a dose-dependent manner. Catalase activity was found to be significantly increased in the liver and kidney at doses higher than 5 mg/kg body weight. CONCLUSIONS: Our study demonstrated that DM induced DNA damage in the liver and kidney of treated mice in a dose-dependent manner; this induction was associated to DM-induced oxidative stress. Further investigations are needed to prove the implication of oxidative stress in genotoxicity induced by DM.
显示更多 [+] 显示较少 [-]Quantification of bisphenol A, 353-nonylphenol and their chlorinated derivatives in drinking water treatment plants
2012
Dupuis, Antoine | Migeot, Virginie | Cariot, Axelle | Albouy-Llaty, Marion | Legube, Bernard | Rabouan, Sylvie
Bisphenol A (BPA) and nonylphenols (NP) are of major concern to public health due to their high potential for human exposure and to their demonstrated toxicity (endocrine disruptor effect). A limited number of studies have shown that BPA and NP are present in drinking water. The chlorinated derivatives that may be formed during the chlorination step in drinking water treatment plants (DWTP) exhibit a higher level of estrogenic activity than their parent compounds. The aim of this study was to investigate BPA, 353NP, and their chlorinated derivative concentrations using an accurate and reproducible method of quantification. This method was applied to both surface and treated water samples from eight French DWTPs producing from surface water. Solid-phase extraction followed by liquid chromatography–tandem mass spectrometry was developed in order to quantify target compounds from water samples. The limits of detection ranged from 0.3 to 2.3 ng/L for BPA and chlorinated BPA and from 1.4 to 63.0 ng/L for 353NP and chlorinated 353NP. BPA and 353NP were found in most analyzed water samples, at a level ranging from 2.0 to 29.7 ng/L and from 0 to 124.9 ng/L, respectively. In most of DWTPs a decrease of BPA and 353NP was observed between surface water and treated water (36.6 to 78.9 % and 2.2 to 100.0 % for BPA and 353NP, respectively). Neither chlorinated BPA nor chlorinated 353NP was detected. Even though BPA and 353NP have been largely removed in the DWTPs studied, they have not been completely eliminated, and drinking water may consequently remain a source of human exposure.
显示更多 [+] 显示较少 [-]