细化搜索
结果 1281-1290 的 6,560
A high-resolution emission inventory of air pollutants from primary crop residue burning over Northern India based on VIIRS thermal anomalies 全文
2020
Singh, Tanbir | Biswal, Akash | Mor, Sahil | Ravindra, Khaiwal | Singh, Vikas | Mor, Suman
Emissions from the crop residue burning adversely affect the regional and global air quality including public health. In this study, a district-wise comprehensive emission inventory of key pollutants (PM₂.₅, PM₁₀, CO, CO₂, SO₂, NOx, N₂O, NH₃, CH₄, NMVOC, EC, OC, PAH) emitted during primary crop residue burning was developed using activity data for the major agrarian states of north India for the agricultural year 2017–18. The emissions were scaled to the spatial resolution of 1 km grid to study the spatial distribution of crop residue burning activities using VIIRS Thermal anomalies datasets. An estimated 20.3 Mt and 9.6 Mt of crop residue were burned in Punjab and Haryana, resulting in an emission of 137.2 Gg and 56.9 Gg of PM₂.₅ and 163.7 Gg and 72.1 of PM₁₀ Gg for respective states. The emissions of EC, OC, and PAHs were 8.6 Gg, 45.7 Gg, and 0.08 Gg in Punjab, whereas in Haryana emissions were 3.7 Gg, 17.7 Gg, and 0.03 Gg, respectively. The results show that rice and wheat crops were major contributor to residue burnt at the field (>90%) leading to the high load of atmospheric emissions in the IGP region. Further, CO₂ equivalent greenhouse gas emissions were 34.8 Tg and 17.3 Tg for Punjab and Haryana, respectively. Around 30000 and 8500 active fires were detected by VIIRS over the agricultural area of Punjab and Haryana during the studied year. The GIS-based bottom-up approach using gridded emission inventory shows pollutant distribution dominates over the south-western part of Punjab and north-western region of Haryana. The proximity of these regions to Delhi and transboundary movement of emissions towards Indo-Gangetic plains causes high air pollution episodes. The high-resolution inventory of various pollutants will be useful for regional air quality models to better predict and manage the hotspot of air pollution.
显示更多 [+] 显示较少 [-]Distribution of PAHs in coal ashes from the thermal power plant and fluidized bed combustion system; estimation of environmental risk of ash disposal 全文
2020
Buha-Marković, Jovana Z. | Marinković, Ana D. | Nemoda, Stevan Đ | Savić, Jasmina Z.
The comparison of fly ash generated from lignite combustion in a thermal power plant Kolubara A (Veliki Crljeni) and bottom and fly ash from coal waste combustion in a semi-industrial fluidized bed boiler (Vinča) was performed as the function of particle size. The average total concentrations of the 16 EPA priority PAHs in ash fractions are 0.49 mg kg⁻¹ of ash (thermal power plant) and 17.48 mg kg⁻¹ of ash (fluidized bed boiler). The sum of 3- and 4-ring PAHs accounts for more than 93% of overall PAHs concentration, and the most abundant among them is fluoranthene.The portions of PAHs groups defined based on their physico-chemical properties, as obtained from quantitative structure-activity relationship (QSAR) models included in the Vega platform, were determined. These portions, emission factors, and benzo[a]pyrene equivalence concentrations were further on used to estimate the potential environmental impact of ash disposal. The PAHs emission factors are higher compared to values in the air pollutant emission inventory guidebook of the cooperative program for monitoring and evaluation of the long-range transmission of air pollutants in Europe (EMEP/EEA). The overall emission factors of 16 PAHs for combustion of lignite and coal waste are determined to be 0.15 and 249.97 mg kg⁻¹ of fuel, respectively. Based on the ratios of benzo[a]pyrene equivalence concentrations of each ash and correspondent fuel, the disposal of fly ash from the cyclone of fluidized bed boiler represents the highest risk to the environment among tested ashes.
显示更多 [+] 显示较少 [-]Nitrate sources and biogeochemical processes in karst underground rivers impacted by different anthropogenic input characteristics 全文
2020
Yang, Pingheng | Wang, Yuyang | Wu, Xinyu | Chang, Longran | Ham, Brian | Song, Lisheng | Groves, Chris
Nitrate is one of the most common pollution sources in groundwater, particularly in highly vulnerable karst aquifers. The potential for nitrification and denitrification within karst aquifers varies in different settings depending on the extent of anthropogenic inputs, so that accurate identification of nitrate sources can be difficult. Geochemical data and dual nitrate isotopes were measured in this study, incorporating a Bayesian isotopic mixing model, and used to identify nitrate sources, nitrification and denitrification, and quantitatively determine nitrate sources under different extents of anthropogenic inputs in three karst catchments within Chongqing Municipality, SW China: Laolongdong (an urbanized area), Qingmuguan (a suburban village), and Shuifang Spring (a protected natural area). At the Laolongdong catchment, the groundwater was in a reducing condition and enriched in δ¹⁵NNO₃ (averaging 18.9 ± 6.9‰) and δ¹⁸ONO₃ (averaging 8.5 ± 4.6‰). Manure and sewage waste were the main contributing nitrate sources. A slope of 1.8: 1 of the dual isotopes suggested a denitrification process occurring in anaerobic conduit flow. Within the Qingmuguan catchment, groundwater had average δ¹⁵NNO₃ and δ¹⁸ONO₃ values of 9.7 ± 3.5‰, and 1.9 ± 3.4‰, respectively. The data showed evidence for nitrification, and the contribution of soil organic nitrogen was 52.1%, followed by a contribution of 44.8% from manure and wastewater. At the Shuifang Spring catchment, the mean δ¹⁵NNO₃ and δ¹⁸ONO₃ values in groundwater were 8.8 ± 2.9‰, 2.3 ± 4.6‰, respectively. Nitrification was the dominant process and most of the nitrate was derived from soil organic nitrogen. This study suggests that karst underground rivers overlain by urban land use undergo denitrification, while the suburban and relatively pristine karst aquifers are dominated by nitrification, allowing development of a conceptual model for nitrate sources and transformations in karst aquifers from the categories of land use (i.e., urban, suburban, and pristine areas).Anthropogenic activities can change biogeochemical nitrogen dynamics of vulnerable karst aquifers, such that the groundwater overlain by an urban settlement has undergone denitrification, while suburban and pristine areas have been dominated by nitrification.
显示更多 [+] 显示较少 [-]Toxicity of nickel and cobalt in Japanese flounder 全文
2020
Sun, Zhaohui | Gong, Chunguang | Ren, Jiangong | Zhang, Xiaoyan | Wang, Guixing | Liu, Yufeng | Ren, Yuqin | Zhao, Yaxian | Yu, Qinghai | Wang, Yufen | Hou, Jilun
Nickel and cobalt are essential elements that become toxic at high concentrations. Little is known about nickel and cobalt toxicity in aquatic animals. This study aimed to investigate acute and chronic toxicity of nickel and cobalt in Japanese flounder (Paralichthys olivaceous), with emphasis on oxidative stress reactions, histopathological changes, and differences in gene expression. The lethal concentration for 50% mortality (LC₅₀) in 3 and 8 cm Japanese flounder exposed to nickel for 96 h was found to be 86.2 ± 0.018 and 151.3 ± 0.039 mg/L; for cobalt exposure, LC₅₀ was 47.5 ± 0.015 and 180.4 ± 0.034 mg/L, respectively. Chronic nickel and cobalt exposure caused different degrees of oxidative enzyme activity changes in gill, liver, and muscle tissues. Erythrocyte deformations were detected after acute or chronic exposure to nickel and cobalt. the nickel and cobalt exposure also caused pathological changes such as spherical swelling over other gill patches, rod-like proliferations in the gill patch epithelial cell layer, and disorder in hepatocyte arrangement, cell swelling, and cytoplasm loosening. RNA-Seq indicated that there were 184 upregulated and 185 downregulated genes in the liver of Japanese flounder exposed to 15 mg/L nickel for 28 d. For cobalt, 920 upregulated and 457 downregulated genes were detected. Among these differentially expressed genes, 162 were shared by both nickel and cobalt exposure. In both nickel and cobalt, pathways including fatty acid elongation, steroid biosynthesis, unsaturated fatty acid biosynthesis, fatty acid metabolism, PPAR signaling, and ferroptosis were significantly enriched. Taken together, these results aided our understanding of the toxicity of nickel and cobalt in aquatic animals.
显示更多 [+] 显示较少 [-]Acute exposure to oil induces age and species-specific transcriptional responses in embryo-larval estuarine fish 全文
2020
Jones, Elizabeth R. | Simning, Danielle | Serafin, Jenifer | Sepulveda, Maria S. | Griffitt, Robert J.
Because oil spills frequently occur in coastal regions that serve as spawning habitat, characterizing the effects of oil in estuarine fish carries both economic and environmental importance. There is a breadth of research investigating the effects of crude oil on fish, however few studies have addressed how transcriptional responses to oil change throughout development or how these responses might be conserved across taxa. To investigate these effects, we performed RNA-seq and pathway analysis following oil exposure 1) in a single estuarine species (Cyprinodon variegatus) at three developmental time points (embryos, yolk-sack larvae, free-feeding larvae), and 2) in two ecologically similar species (C. variegatus and Fundulus grandis), immediately post-hatch (yolk-sack stage). Our results indicate that C. variegatus embryos mount a diminished transcriptional response to oil compared to later stages, and that few transcriptional responses are conserved throughout development. Pathway analysis of larval C. variegatus revealed dysregulation of similar biological processes at later larval stages, including alteration of cholesterol biosynthesis pathways, cardiac development processes, and immune functions. Our cross-species comparison showed that F. grandis exhibited a reduced transcriptional response compared to C. variegatus. Pathway analysis revealed that the two species shared similar immune and cardiac responses, however pathways related to cholesterol biosynthesis exhibited a divergent response as they were activated in C. variegatus but inhibited in F. grandis. Our results suggest that examination of larval stages may provide a more sensitive estimate of oil-impacts than examination of embryos, and challenge assumptions that ecologically comparable species respond to oil similarly.
显示更多 [+] 显示较少 [-]Waterborne and dietary accumulation of well-dispersible hematite nanoparticles by zebrafish at different life stages 全文
2020
Huang, Bin | Cui, Yu-Qing | Guo, Wen-Bo | Yang, Liuyan | Miao, Ai-Jun
The widespread use of nanoparticles (NPs) has drawn considerable attention because of their potential toxicity and the environmental consequences thereof. However, the effects of the exposure route and life stage of an organism on the bioaccumulation and toxicity of NPs are largely unknown. In the present study, we investigated the accumulation kinetics (uptake, assimilation, and efflux) and tissue distribution of waterborne and dietary hematite NPs (HemNPs) during three life stages (embryo, larva, and adult) of the zebrafish Danio rerio. For all zebrafish life stages, the waterborne accumulation of well-dispersed HemNPs increased linearly with exposure time but decreased after reaching a maximum. The increase in HemNPs accumulation followed the order embryo > larva > adult. Compared with the waterborne route, the dietary accumulation of HemNPs in larval and adult zebrafish fluctuated, reaching a maximum after each food refreshment and then decreasing until the next food addition. Similar to waterborne exposure, adult fish accumulated less dietary HemNPs than did larvae. Nevertheless, dietary HemNPs mostly accumulated in the intestinal tract, with smaller amounts in the truncus, head, and gills, as compared with their waterborne counterparts. Moreover, in the gonad no dietary HemNPs were detected whereas accumulation via waterborne HemNPs was significant. Despite the low assimilation efficiency of dietary HemNPs, biodynamic modeling showed that the diet was the main source of particle accumulation in zebrafish. Thus, both the life stage and the exposure route should be considered in evaluations of the environmental risks of NPs.
显示更多 [+] 显示较少 [-]Particulate matter (PM10) enhances RNA virus infection through modulation of innate immune responses 全文
2020
Miśra, R̥cā | Krishnamoorthy, Pandikannan | Gangamma, S. | Raut, Ashwin Ashok | Kumar, Himanshu
Sensing of pathogens by specialized receptors is the hallmark of the innate immunity. Innate immune response also mounts a defense response against various allergens and pollutants including particulate matter present in the atmosphere. Air pollution has been included as the top threat to global health declared by WHO which aims to cover more than three billion people against health emergencies from 2019 to 2023. Particulate matter (PM), one of the major components of air pollution, is a significant risk factor for many human diseases and its adverse effects include morbidity and premature deaths throughout the world. Several clinical and epidemiological studies have identified a key link between the PM existence and the prevalence of respiratory and inflammatory disorders. However, the underlying molecular mechanism is not well understood. Here, we investigated the influence of air pollutant, PM₁₀ (particles with aerodynamic diameter less than 10 μm) during RNA virus infections using Highly Pathogenic Avian Influenza (HPAI) – H5N1 virus. We thus characterized the transcriptomic profile of lung epithelial cell line, A549 treated with PM₁₀ prior to H5N1infection, which is known to cause severe lung damage and respiratory disease. We found that PM₁₀ enhances vulnerability (by cellular damage) and regulates virus infectivity to enhance overall pathogenic burden in the lung cells. Additionally, the transcriptomic profile highlights the connection of host factors related to various metabolic pathways and immune responses which were dysregulated during virus infection. Collectively, our findings suggest a strong link between the prevalence of respiratory illness and its association with the air quality.
显示更多 [+] 显示较少 [-]Association between proximity to industrial chemical installations and cancer mortality in Spain 全文
2020
Ayuso-Álvarez, Ana | García-Pérez, Javier | Triviño Juárez, José Matías | Larrinaga-Torrontegui, Unai | González Sánchez, Mario | Ramis, Rebeca | Boldo, Elena | López-Abente, Gonzalo | Galán, Iñaki | Fernández-Navarro, Pablo
It is likely that pollution from chemical facilities will affect the health of any exposed population; however, the majority of scientific evidence available has focused on occupational exposure rather than environmental. Consequently, this study assessed whether there could have been an excess of cancer-related mortality associated with environmental exposure to pollution from chemical installations – for populations residing in municipalities in the vicinity of chemical industries. To this end, we designed an ecological study which assessed municipal mortality due to 32 types of cancer in the period from 1999 to 2008. The exposure to pollution was estimated using distance from the facilities to the centroid of the municipality as a proxy for exposure. In order to assess any increased cancer mortality risk in municipalities potentially exposed to chemical facilities pollution (situated at a distance of ≤5 km from a chemical installation), we employed Bayesian Hierarchical Poisson Regression Models. This included two Bayesian inference methods: Integrated Nested Laplace Approximations (INLA) and Markov Chain Monte Carlo (MCMC, for validation). The reference category consisted of municipalities beyond the 5 km limit. We found higher mortality risk (relative risk, RR; estimated by INLA, 95% credible interval, 95%CrI) for both sexes for colorectal (RR, 1.09; 95%CrI, 1.05–1.15), gallbladder (1.14; 1.03–1.27), and ovarian cancers (1.10; 1.02–1.20) associated with organic chemical installations. Notably, pleural cancer (2.27; 1.49–3.41) in both sexes was related to fertilizer facilities. Associations were found for women, specifically for ovarian (1.11; 1.01–1.22) and breast cancers (1.06; 1.00–1.13) in the proximity of explosives/pyrotechnics installations; increased breast cancer mortality risk (1.10; 1.03–1.18) was associated with proximity to inorganic chemical installations. The results suggest that environmental exposure to pollutants from some types of chemical facilities may be associated with increased mortality from several different types of cancer.
显示更多 [+] 显示较少 [-]Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil 全文
2020
Pei, Guangpeng | Zhu, Yuen | Wen, Junguo | Pei, Yanxi | Li, Hua
A composite material comprising of nanoscale zero-valent iron (nZVI) supported on vinegar residue (nZVI@VR) was prepared and applied for remediation of soils contaminated by hexavalent chromium (Cr(VI)). Sedimentation test results revealed that the nZVI@VR displayed enhanced stability in comparison to the bare-nZVI. Remediation experiments exhibited the immobilization efficiency of Cr(VI) and Crtotal was 98.68% and 92.09%, respectively, when using 10 g nZVI@VR (nZVI 5%) per 200 g Cr-contaminated soil (198.20 mg kg−1 Cr(VI), 387.24 mg kg−1 Crtotal) after two weeks of incubation. Further analyses demonstrated that almost all the exchangeable Cr was transformed into Fe–Mn oxide bound and organic matter bound. Moreover, the application of nZVI@VR enhanced soil organic carbon content and reduced redox potential. After granulation, the immobilization efficiency of Cr(VI) and Crtotal achieved 100% and 91.83% at a dosage of 10% granular nZVI@VR. Granular nZVI@VR also accelerated the transform of more available Cr (exchangeable and bound to carbonates) into less available fractions (Fe–Mn oxide bound and organic matter bound), thus resulting in a remarkable reduction in the Cr bioavailability. These results prove that nZVI@VR can be an effective remediation reagent for soils contaminated by Cr(VI).
显示更多 [+] 显示较少 [-]Trace metal effects on gross primary productivity and its associative environmental risk assessment in a subtropical lake, China 全文
2020
Jia, Junjie | Gao, Yang | Lu, Yao | Shi, Kun | Li, Zhaoxi | Wang, Shuoyue
The transport of trace metals in river–lake systems can potentially increase or decrease primary productivity in some basins and subsequently affect the carbon cycle of watersheds. In this study, we investigated a variety of trace metal concentrations and transport flux in the Poyang Lake basin during four seasons. Results show that the Gan River transports 78% of selenium (Se) and 42% of lead (Pb) into Poyang Lake each year, resulting in heavy metal pollution dominated by Pb and Se in 30%–75% of its water. Although toxic heavy metals, such as Pb, chromium (Cr), and copper (Cu), inhibit phytoplankton growth and decrease its gross primary productivity (GPP), excessive Se could effectually promote productivity. However, the negative effect of Pb on GPP is more significant than the positive effect of Se on GPP; hence, their interaction effectuates a decrease in total primary productivity. Additionally, under high nutrients level, the synergistic effect of heavy metals and nutrients will reduce GPP. Agricultural fertilizer is likely the source of both Pb, Cu, Se and N. Gan River contributes 35%–80% of the heavy metal inputs to Poyang Lake. It is therefore necessary to improve the ecological environment of phytoplankton and promote productivity in the Poyang Lake basin by reducing the application of agricultural chemical fertilizers to control pollution. Our results indicate that the role of certain, less studied trace elements (e.g., Pb, Cr, Cu, and Se) in regulating primary productivity of watershed ecosystems is more important than previously thought. This study also discusses potential impacting mechanisms associated with these metals on phytoplankton, whose biological functions need to be verified in future experiments.
显示更多 [+] 显示较少 [-]