细化搜索
结果 1311-1320 的 6,473
Fabrication and evaluation of silica embedded and zerovalent iron composited biochars for arsenate removal from water
2020
Ahmad, Munir | Usman, Adel R.A. | Hussain, Qaiser | Al-Farraj, Abdullah S.F. | Tsang, Yiu Fai | Bundschuh, Jochen | Al-Wabel, Mohammad I.
Waste date palm-derived biochar (DPBC) was modified with nano-zerovalent iron (BC-ZVI) and silica (BC-SiO₂) through mechanochemical treatments and evaluated for arsenate (As(V)) removal from water. The feedstock and synthesized adsorbents were characterized through proximate, ultimate, and chemical analyses for structural, surface, and mineralogical compositions. BC-ZVI demonstrated the highest surface area and contents of C, N, and H. A pH range of 2–6 was optimum for BC-ZVI (100% removal), 3–6 for DPBC (89% removal), and 4–6 for BC-SiO₂ (18% removal). Co-occurring PO₄³⁻ and SO₄²⁻ ions showed up to 100% reduction, while NO₃⁻ and Cl⁻ ions resulted in up to 26% reduction in As(V) removal. Fitness of the Langmuir, Freundlich and Redlich-Peterson isotherms to As(V) adsorption data suggested that both mono- and multi-layer adsorption processes occurred. BC-ZVI showed superior performance by demonstrating the highest Langmuir maximum adsorption capacity (26.52 mg g⁻¹), followed by DPBC, BC-SiO₂, and commercial activated carbon (AC) (7.33, 5.22, and 3.28 mg g⁻¹, respectively). Blockage of pores with silica particles in BC-SiO₂ resulted in lower As(V) removal than that of DPBC. Pseudo-second-order kinetic model fitted well with the As(V) adsorption data (R² = 0.99), while the Elovich, intraparticle diffusion, and power function models showed a moderate fitness (R² = 0.53–0.93). The dynamics of As(V) adsorption onto the tested adsorbents exhibited the highest adsorption rates for BC-ZVI. As(V) adsorption onto the tested adsorbents was confirmed through post-adsorption FTIR, SEM-EDS, and XRD analyses. Adsorption of As(V) onto DPBC, BC-SiO₂, and AC followed electrostatic interactions, surface complexation, and intraparticle diffusion, whereas, these mechanisms were further abetted by the higher surface area, nano-sized structure, and redox reactions of BC-ZVI.
显示更多 [+] 显示较少 [-]Contrasting mixing state of black carbon-containing particles in summer and winter in Beijing
2020
Xie, Conghui | He, Yao | Lei, Lu | Zhou, Wei | Liu, Jingjie | Wang, Qingqing | Xu, Weiqi | Qiu, Yanmei | Zhao, Jian | Sun, Jiaxing | Li, Lei | Li, Mei | Zhou, Zhen | Fu, Pingqing | Wang, Zifa | Sun, Yele
Black carbon (BC) exerts a large impact on climate radiative forcing and public health, and such impacts depend strongly on chemical composition and mixing state. Here a single particle aerosol mass spectrometry (SPA-MS) along with an aerosol chemical speciation monitor was employed to characterize the composition and mixing state of BC-containing particles in summer and winter in Beijing. Approximately 2 million BC-containing particles were chemically analyzed, and the particles were classified into nine and eight different types in summer and winter, respectively, according to mass spectral signatures and composition. The BC-containing particles in summer were dominated by the type of nitrate-related BC (BC-N, 56.7%), while in winter the BC mixed with organic carbon (OC) and sulfate (BCOC-S), and OC and nitrate (BCOC-N) were two dominant types accounting for 44.9% and 16.6%, respectively. The number fractions of BC-N in summer, and BCOC-N and BC-SN in winter increased largely during periods with severe air pollution, suggesting the enhanced secondary formation on BC-containing particles. We also found that the primary emissions of the biomass burning and coal combustion can affect BC mixing state substaintially as indicated by the considerable fraction of BC mixed with levoglucosan and polycyclic aromatic hydrocarbons in winter. Bivariate polar plots and back trajectory analysis indicated that the sulfate-associated BC-containing particles were mostly from regional transport while the nitrate-related type was more from local production. The optical parameter of absorbing Ångström exponents (AAE) of BC was 1.2 and 1.5 in summer and winter, respectively, and the AAE dependence of BC mixing state was also different in the two seasons. While higher fractions of BC-N were observed during lower AAE periods in summer, the variations of dominant OC-related BC-containing particles in winter were fairly stable as a function of AAE.
显示更多 [+] 显示较少 [-]Could biotransport be an important pathway in the transfer of phenol derivatives into the coastal zone and aquatic system of the Southern Baltic?
2020
Staniszewska, Marta | Nehring, Iga | Falkowska, Lucyna | Bodziach, Karina
Bird guano and the faeces of marine mammals appear to be a significant yet undisclosed biotransporter of Endocrine Disrupting Compounds in the marine environment. The authors determined the concentration of bisphenol A (BPA), 4-tert-octylphenol (4-t-OP) and 4-nonylphenol (4-NP) removed from birds and seals in their droppings into the coastal zone of the Gulf of Gdansk (Southern Baltic Sea).The research was carried out on samples of bird guano collected during the breeding season and after in 2016 at nesting sites, as well as on faecal samples from grey seals (Halichoerus grypus grypus) living in the Seal Centre of the Marine Station in Hel between 2014 and 2018. Measurements were carried out using high performance chromatography with fluorescence detector. Results have shown that the presence of seabird habitats and grey seal colonies in the coastal zone of the Gulf of Gdansk can have an impact on the pollution of the seashore (beach sand, bottom sediment and surface seawater) with phenol derivatives. The concentrations of BPA, 4-t-OP and 4-NP ranged from 0.1 to 32.97 ng∙g⁻¹dw in sediment and beach sand, and from 0.23 to over 800 ng dm⁻³ in seawater. In the cases of bisphenol A and 4-tert-octylphenol safe concentration levels in the waters were exceeded. Bisphenol A concentrations were almost always found to be the highest. This was also noted in bird guano and seal faeces, although it was found to be much higher in the seal faeces - average 10149.79 ng g⁻¹ dw, than in bird guano. An experiment conducted to assess BPA, 4-t-OP, 4-NP leaching from bird guano and seal faeces into seawater, also confirmed the importance of animal excrement in the circulation of these compounds in the marine ecosystem. The highest % of leaching related to BPA was noted at 20 °C and reached 84%. The lowest % of leaching was for 4-nonylphenol (44%).
显示更多 [+] 显示较少 [-]Seasonal progression of surface ozone and NOx concentrations over three tropical stations in North-East India
2020
Tyagi, Bhishma | Singh, Jyotsna | Beig, G.
Monitoring of surface ozone (O₃) and Nitrogen Oxides (NOx) are vital for understanding the variation and exposure impact of these trace gases over the habitat. The present study analyses the in situ observations of surface O₃ and NOx for January–December 2016, for the first time over three sites of North-Eastern India (Aizwal, Gauhati and Tezpur). The sites are major cities of north-eastern India, located in the foothills of Eastern Himalaya and have no industrial impacts. We have analysed the seasonal variation of O₃ and NOx and found that the site Tezpur, which is in the valley area of Eastern Himalaya, is experiencing higher values of pollutants persisting for a long time compared to the other two stations. The correlation of surface O₃ with the air temperature at all three sites suggested that all the O₃ may not be locally produced, but has the contribution of transported pollution reaching to stations. The study also attempts to discover the existing variability in the surface O₃ and NOx over the study area by employing continuous wavelet analysis.
显示更多 [+] 显示较少 [-]Effects of climate warming and nitrogen deposition on subtropical montane ponds (central China) over the last two centuries: Evidence from subfossil chironomids
2020
Zheng, Ting | Cao, Yanmin | Peng, Jia | Bai, Xue | Chen, Xu
Many remote montane ecosystems are experiencing biogeochemical changes driven by warming climate and atmospheric pollution. Compared with circumpolar and temperate lakes, the responses of subtropical montane lakes to these external stressors have been less investigated. Here we present sedimentary multi-proxies records (i.e. chironomids, elements and stable isotope of carbon and nitrogen) in ²¹⁰Pb-dated cores from two montane ponds (central China). Before the 1900s, low biomass and the dominance of opportunistic species (e.g. Chironomus anthracinus-type) in both ponds might be in response to cold and harsh condition. Thereafter, chironomid communities in both ponds experienced pronounced shifts. Nutrient-tolerant/warm-adapted species (e.g. Chironomus sp., Polypedilum nubeculosum-type and Endochironomus impar-type) proliferated and biomass increased synchronously after the 1900s, suggestive of favorable condition for chironomid growth. Redundancy analyses revealed that changes in chironomid communities in both ponds were significantly correlated with rising temperature and δ¹⁵N depletion. Prolonged growing season and nitrogen subsidy would increase primary productivity, and hence enhancing food availability for chironomids. Catchment-mediated indirect effects of warming and nitrogen deposition, such as hydrological changes and terrestrial organic matter inputs, would impose further influences on chironomid communities. Taken together, the combined effects of climate warming and nitrogen deposition have caused significant shifts in primary consumers of these montane ponds, and imposed cascading effects on structure and function of subtropical montane aquatic ecosystems.
显示更多 [+] 显示较少 [-]Hormonal and behavioural effects of motorboat noise on wild coral reef fish
2020
Mills, Suzanne C. | Beldade, Ricardo | Henry, Laura | Laverty, David | Nedelec, Sophie L. | Simpson, Stephen D. | Radford, Andrew N.
Anthropogenic noise is an emergent ecological pollutant in both terrestrial and aquatic habitats. Human population growth, urbanisation, resource extraction, transport and motorised recreation lead to elevated noise that affects animal behaviour and physiology, impacting individual fitness. Currently, we have a poor mechanistic understanding of the effects of anthropogenic noise, but a likely candidate is the neuroendocrine system that integrates information about environmental stressors to produce regulatory hormones; glucocorticoids (GCs) and androgens enable rapid individual phenotypic adjustments that can increase survival. Here, we carried out two field-based experiments to investigate the effects of short-term (30 min) and longer-term (48 h) motorboat-noise playback on the behaviour, GCs (cortisol) and androgens of site-attached free-living orange-fin anemonefish (Amphiprion chrysopterus). In the short-term, anemonefish exposed to motorboat-noise playback showed both behavioural and hormonal responses: hiding and aggression increased, and distance moved out of the anemone decreased in both sexes; there were no effects on cortisol levels, but male androgen levels (11-ketotestosterone and testosterone) increased. Some behaviours showed carry-over effects from motorboat noise after it had ceased, and there was no evidence for a short-term change in response to subsequent motorboat-noise playback. Similarly, there was no evidence that longer-term exposure led to changes in response: motorboat noise had an equivalent effect on anemonefish behaviour and hormones after 48 h as on first exposure. Longer-term noise exposure led to higher levels of cortisol in both sexes and higher testosterone levels in males, and stress-responses to an additional environmental challenge in both sexes were impaired. Circulating androgen levels correlated with aggression, while cortisol levels correlated with hiding, demonstrating in a wild population that androgen/glucocorticoid pathways are plausible proximate mechanisms driving behavioural responses to anthropogenic noise. Combining functional and mechanistic studies are crucial for a full understanding of this global pollutant.
显示更多 [+] 显示较少 [-]Aluminum, at an environmental concentration, associated with acidic pH and high water temperature, causes impairment of sperm quality in the freshwater teleost Astyanax altiparanae (Teleostei: Characidae)
2020
Silva Pinheiro, João Paulo | Bertacini de Assis, Cecilia | Sanches, Eduardo Antônio | Moreira, Renata Guimarães
Given the toxicity of metals, including aluminum (Al), and the effects of water temperature on ectotherms, we investigated the individual or association effect of these variables (Al + acidic pH + temperature changes) on sperm quality of Astyanax altiparanae. Mature males were divided into nine experimental groups based on the combination of each of three water temperatures (20, 25, and 30 °C) with neutral and acidic pH values (7.0 and 5.5, respectively) with or without 0.5 mg L⁻¹ Al. The fish were subjected to subacute, semi-static exposure and at 24 and 96 h were evaluated for seminal parameters: (1) pH; (2) osmolality; (3) sperm concentration; (4) sperm morphology; (5) sperm kinetics; and (6) sperm ultrastructure. At 30 °C, Al caused a reduction in osmolality (24 and 96 h) and sperm concentration (24 h). When analysing sperm kinetics (30 s post-activation), Al caused a reduction in total motility at all temperatures (24 h), and when this exposure time was longer (96 h), both acidic pH and Al addition to the water caused sperm motility reduction. By analysing curvilinear velocity (VCL) 30 s after sperm activation (24 and 96 h), the acidic pH caused a reduction in sperm movement at 20 and 30 °C, but at 25 °C Al triggered this reduction. Finally, Al in the water caused ultrastructural changes in the sperm head, midpiece, and flagella regardless of water temperature. Also, it was found that the combination of Al at 30 °C caused a reduction in sperm head area while at 20 °C, Al triggered a reduction in the midpiece area. Therefore, acidity influenced some A. altiparanae sperm parameters but Al in the water accentuated these effects on seminal quality, especially seminal osmolality and sperm concentration, kinetics, and ultrastructure. This toxicity was also influenced by changes in water temperature.
显示更多 [+] 显示较少 [-]Automated mineralogy for quantification and partitioning of metal(loid)s in particulates from mining/smelting-polluted soils
2020
Tuhý, Marek | Hrstka, Tomáš | Ettler, Vojtéch
Topsoils near active and abandoned mining and smelting sites are highly polluted by metal(loid) contaminants, which are often bound to particulates emitted from ore processing facilities and/or windblown from waste disposal sites. To quantitatively determine the contaminant partitioning in the soil particulates, we tested an automated mineralogy approach on the heavy mineral fraction extracted from the mining- and smelting-polluted topsoils exhibiting up to 1920 mg/kg As, 5840 mg/kg Cu, 4880 mg/kg Pb and 3310 mg/kg Zn. A new generation of automated scanning electron microscopy (autoSEM) was combined and optimized with conventional mineralogical techniques (XRD, SEM/EDS, EPMA). Parallel digestions and bulk chemical analyses were used as an independent control of the autoSEM-calculated concentrations of the key elements. This method provides faster data acquisition, the full integration of the quantitative EDS data and better detection limits for the elements of interest. We found that As was mainly bound to the apatite group minerals, slag glass and metal arsenates. Copper was predominantly hosted by the sulfides/sulfosalts and the Cu-bearing secondary carbonates. The deportment of Pb is relatively complex: slag glass, Fe and Mn (oxyhydr)oxides, metal arsenates/vanadates and cerussite were the most important carriers for Pb. Zinc is mainly bound to the slag glass, Fe (oxyhydr)oxides, smithsonite and sphalerite. Limitations exist for the less abundant contaminants, which cannot be fully quantified by autoSEM due to spectral overlaps with some major elements (e.g., Sb vs. Ca, Cd vs. K and Ca in the studied soils). AutoSEM was found to be a useful tool for the determination of the modal phase distribution and element partitioning in the metal(loid)-bearing soil particulates and will definitely find more applications in environmental soil sciences in the future.
显示更多 [+] 显示较少 [-]Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome
2020
Gudda, Fredrick Owino | Waigi, Michael Gatheru | Odinga, Emmanuel Stephen | Yang, Bing | Carter, Laura | Gao, Yanzheng
Wastewater reuse in food crop irrigation has led to agroecosystem pollution concerns and human health risks. However, there is limited attention on the relationship of sub-lethal antibiotic levels in vegetables and resistance selection. Most risk assessment studies show non-significant toxicity, but overlook the link between antibiotics in crops and propagation of gut microbiome resistance selection. The review highlights the risk of antibiotics in treated water used for irrigation, uptake, and accumulation in edible vegetable parts. Moreover, it elucidates the risks to the adaptive resistance selection of the gut microbiome from sub-lethal antibiotic levels, as a result of dietary contaminated vegetables. Experiments have reported that bacterial resistance selection is possible at concentrations that are several hundred-folds lower than lethal effect levels on susceptible cells. Consequently, mutants selected at low antibiotic levels, such as those from vegetables, are fitter and more resistant compared to those selected at high concentrations. Necessary standardization, such as the development of minimum acceptable antibiotic limits allowable in food crop irrigation water, with a focus on minimum selection concentration, and not only toxicity, has been proposed. Wastewater irrigation offers environmental benefits and can contribute to food security, but it has non-addressed risks. Research gaps, future perspectives, and frameworks of mitigating the potential risks are discussed.
显示更多 [+] 显示较少 [-]Lead source and bioaccessibility in windowsill dusts within a Pb smelting-affected area
2020
Xing, Weiqin | Yang, Hao | Ippolito, James A. | Zhang, Yuqing | Scheckel, Kirk G. | Li, Liping
Windowsill, heavy metal-containing dust samples, collected at different building heights, may provide some insight into both source and human health risk. Windowsill dust samples were collected from the 1st to 9th floor (1.4–23.2 m above ground) near a lead smelter (1 km to the smelter) and in urban areas (4.2–7.3 km to the smelter) and separated into <10, 10–45 and 45–125 μm size fractions. Samples were extracted with artificial lysosomal fluid (ALF) and the physiologically based extraction test (PBET) (<10 μm fractions only), subjected to scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS) and Pb isotopic analysis. Greater Pb concentrations were found in 10–45 μm fraction than the other size fractions; at the PX site, dust Pb concentrations increased with windowsill height, while an opposite trend was found at other sites. Isotopic analysis and SEM-EDS results supported this contention. Higher floor samples collected near the smelter were more affected by lead smelting than lower floor samples; lower floor samples collected at urban sites were more affected by resuspended Pb-laden particles from the ground than higher floors. The Pb bioaccessible fraction (BAF) in the ALF and PBET ranged between 68.9-90.1 and 1.3–17.0%, respectively; urban samples had greater BAF values than samples collected near the smelter. This, first of its kind investigation regarding Pb in dusts at different building heights, provides further insight for reducing human health risks within Pb smelter vicinities.
显示更多 [+] 显示较少 [-]