细化搜索
结果 1321-1330 的 2,503
Operational Evaluation of Phoslock Phosphorus Locking Technology in Laguna Niguel Lake, California
2014
Bishop, West M. | McNabb, Terry | Cormican, Ian | Willis, Ben E. | Hyde, Shaun
Management strategies that prevent the onset of nuisance and noxious cyanobacteria blooms are needed to preserve the integrity and safety of freshwater resource uses. Scientifically defensible data are needed regarding efficacy of proactive approaches in order to assist water resource managers in making informed decisions. As phosphorus availability has been indicated as a crucial aspect of cyanobacteria presence/dominance in freshwater systems, the integration of novel technologies to inactivate phosphorus is a critical component to achieve improved water quality. Phoslock (Phoslock Water Solutions, Ltd.) phosphorus locking technology is composed of the element lanthanum in a bentonite clay matrix that has a high specificity to bind and inactivate soluble reactive phosphorus. This research evaluated the phosphorus binding efficiency of Phoslock in aqueous and sediment matrices and the consequent impact on algae assemblage composition and water quality parameters. Laguna Niguel Lake in California afforded an opportunity to evaluate the operational effectiveness of Phoslock in a system historically plagued by high phosphorus concentrations, potentially toxic cyanobacteria (Aphanizomenonflos-aquae dominant), and lake closures. Phoslock was able to rapidly (<2 weeks) and significantly (p < 0.0005) decrease total (>80 %) and free reactive (>95 %) phosphorus in the water column and shift potentially releasable sediment phosphorus fractions to residual forms after treatment. Despite documented cyanobacteria blooms and high pretreatment cell densities, cyanobacteria levels remained below or near detection limits and only comprised a small fraction of the algae assemblage following Phoslock application. This study provides water resource managers an information on operational implementation and efficacy of a phosphorus binding technology.
显示更多 [+] 显示较少 [-]Nitrogen Deposition Effects on Diatom Communities in Lakes from Three National Parks in Washington State
2014
Sheibley, Richard W. | Enache, Mihaela | Swarzenski, Peter W. | Moran, Patrick W. | Foreman, James R.
The goal of this study was to document if lakes in National Parks in Washington have exceeded critical levels of nitrogen (N) deposition, as observed in other Western States. We measured atmospheric N deposition, lake water quality, and sediment diatoms at our study lakes. Water chemistry showed that our study lakes were ultra-oligotrophic with ammonia and nitrate concentrations often at or below detection limits with low specific conductance (<100 μS/cm), and acid neutralizing capacities (<400 μeq/L). Rates of summer bulk inorganic N deposition at all our sites ranged from 0.6 to 2.4 kg N ha⁻¹ year⁻¹and were variable both within and across the parks. Diatom assemblages in a single sediment core from Hoh Lake (Olympic National Park) displayed a shift to increased relative abundances of Asterionella formosa and Fragilaria tenera beginning in the 1969–1975 timeframe, whereas these species were not found at the remaining (nine) sites. These diatom species are known to be indicative of N enrichment and were used to determine an empirical critical load of N deposition, or threshold level, where changes in diatom communities were observed at Hoh Lake. However, N deposition at the remaining nine lakes does not seem to exceed a critical load at this time. At Milk Lake, also in Olympic National Park, there was some evidence that climate change might be altering diatom communities, but more research is needed to confirm this. We used modeled precipitation for Hoh Lake and annual inorganic N concentrations from a nearby National Atmospheric Deposition Program station, to calculate elevation-corrected N deposition for 1980–2009 at Hoh Lake. An exponential fit to this data was hindcasted to the 1969–1975 time period, and we estimate a critical load of 1.0 to 1.2 kg N ha⁻¹ year⁻¹for wet deposition for this lake.
显示更多 [+] 显示较少 [-]A Case Study of Landfill Workers Exposure and Dose to Particulate Matter-Bound Metals
2014
Chalvatzaki, E. | Aleksandropoulou, V. | Lazaridis, M.
The objective of the current study was to estimate the dose in human tissues after inhalation exposure to airborne particulate matter-bound metals at a landfill site. Field measurements have revealed that the 8-h permissible exposure limit set by the Occupational Safety and Health Administration for particulate matter (PM₁₀) was not exceeded for the working personnel at an outdoor weighing facility in the Akrotiri landfill (Chania, Greece). However, PM₁₀concentrations were exceeding the EU health protection standards (50 μg/m³). Furthermore, dust emanating from landfill operations contains traces of heavy metals due to the nature of materials (e.g., sludge, batteries) which have been deposited over the lifetime of the landfill. In addition, particulate matter-bound metals concentrations at the landfill are enhanced by refuse truck emissions (e.g., exhaust, tire wear dust, brake wear dust, road surface wear dust and resuspension of deposited PM on a road surface) and resuspension from the surface of the composting site. Estimations of particle-bound metals dose in the human body were performed for arsenite (ASᴵᴵᴵ), lead (Pb) and cadmium (Cd). The Exposure Dose Model (ExDoM) in conjunction with a Physiologically Based PharmacoKinetic (PBPK) model was applied to determine the dose for an adult Caucasian male worker. The ExDoM was used to estimate the human exposure and the deposition, dose, clearance, retention of particulate matter-bound metals in the human respiratory tract and the mass transferred to the gastrointestinal tract and blood. The PBPK model was developed to describe the movement of metals from the blood into the tissues as a blood-flow-limited model. The results showed that after 1 day of exposure to PMAₛIII, the major accumulation occurs in the lung, muscle and liver. In addition, for PMPb, the major accumulation occurs in the bone, blood and muscle whereas as regard PMCdthe major accumulation occurs in the other tissues (the rest of the body), kidney and liver. The results indicate an increased health risk for an adult Caucasian male worker at the landfill site due to exposure to elevated particulate matter concentrations and their associated metallic content.
显示更多 [+] 显示较少 [-]A Cost-Effective Methodology for Spatial Concentration Distributions of Urban Air Pollutants
2014
Yannopoulos, Panayotis C.
A methodology to determine economically the spatial concentration distribution of the air pollutants of carbon monoxide (CO), sulphur dioxide (SO₂), nitrogen monoxide (NO), nitrogen dioxide (NO₂), oxides of nitrogen (NOₓ) and traffic rates (TR) is described. It involves the immediate transfer of samples from field to analysers for measurement and a subsequent statistical treatment. The proposed methodology has been applied in Patras using 5 and 50-l Teflon air sample bags, sampling at least 12 to 36-l actual volumes within a 20-min time interval. Totally, 221 pairs of 5-l and 112 single 50-l samples were randomly picked in morning rush hours of working days from 64 locations of a 40.0-km²area during a winter period, when peaks of primary air pollutants usually occur due to high traffic rates and systematic inversions. Measurements were used to statistically calculate spatial average levels approximating 1-h mean concentrations with acceptable mean probable errors less than 25 % for indicative random sampling. The 1-h levels were strongly correlated to the corresponding traffic rates. Iso-concentration diagrams indicated possible zones susceptible to high pollution levels and helped to check the location appropriateness of the existing monitoring stations for (a) fixed urban-background measurements at the Vas. Georgiou A’ Sq., which was ideal, and (b) fixed traffic-oriented measurements, which should be relocated to the Ipsilon Alonion Sq. In addition, data helped to determine other points where indicative measurements should be performed. Data could be very useful for the Patras air quality assessment in conjunction with model predictions and/or objective estimation methods.
显示更多 [+] 显示较少 [-]Stabilization of Sewage Sludge by Using Various By-products: Effects on Soil Properties, Biomass Production, and Bioavailability of Copper and Zinc
2014
Shaheen, S. M. | Shams, M. S. | Ibrahim, S. M. | Elbehiry, F. A. | Antoniadis, V. | Hooda, P. S.
Stabilization of sewage sludge (SS) prior to its land disposal may help control the mobility of SS-borne contaminants, particularly potentially toxic metals. We examined the effects of stabilized SS application on soil properties, biomass production, and phytoavailability of Cu and Zn to plants grown in two contrasting soils, Entisol and Aridisol. Stabilized SS mixtures were created by mixing SS in a 3-to-1 ratio with bentonite (B), sugar beet factory lime (SL), brick factory fly ash (BFA), rice straw (RS), water hyacinth (WH), and 50:50 mixture of RS and SL. Mixtures were applied at 50 Mg ha⁻¹, and Sorghum vulgare L. and Eurica sativa were grown in a pot experiment. All the amendments increased plant availability and uptake of both Cu and Zn compared to the unamended control. The application of stabilized SS increased dry plant biomass significantly and decreased DTPA-extractable elements compared to the non-stabilized SS treatment. We conclude that of the six amendments studied, especially sugar beet factory lime (SL) and bentonite (B), are promising for the stabilization of metal-contaminated biosolids and should be tested under field conditions.
显示更多 [+] 显示较少 [-]Genotoxic Effects of Heavy Metal Mixture in Drosophila melanogaster: Expressions of Heat Shock Proteins, RAPD Profiles and Mitochondrial DNA Sequence
2014
Doğanlar, Zeynep Banu | Doğanlar, Oğuzhan | Tabakçıoğlu, Kıymet
The genotoxic effects of four heavy metal mixtures on Drosophila melanogaster were investigated with reference to gene expressions of heat shock proteins (HSP26, HSP60, HSP70 and HSP83), DNA profiles, and mitochondrial NADH dehydrogenase sequence. Adult D. melanogaster flies were treated with a mixture of four (Fe, Cu, Cd and Pb) heavy metals (HMs) in three different concentrations, which were selected based on one higher dose (HM3) and one lower dose (HM1) relative to the permitted limits (HM2) in drinking water at 1st, 5th and 10th days. It was determined that the amount of the accumulated heavy metals and the expressions of the HSP genes were changed with increasing exposure time. The accumulations of Cd and Pb were increased with increasing exposure time; additionally, the HSP expression patterns were determined as HSP70 > HSP60 > HSP26 > HSP83 HM1 (5th day), HM2 (5th day and 10th day), and HM3 (all exposure times). It was also determined that the application of the heavy metal mixture affected the random amplified polymorphic DNA (RAPD) profiles and the mitochondrial NADH dehydrogenase sequence of D. melanogaster. The highest base pair changes (9 bp) were determined at the HM2 concentration (permissible limits in drinking water) on the 1st day of treatment. Therefore, it was shown that mixture of four heavy metals caused a genotoxic effect and D. melanogaster is a useful model organism for heavy metal-induced genotoxicity studies.
显示更多 [+] 显示较少 [-]Estimation of Soil Base Cation Weathering Rates with the PROFILE Model to Determine Critical Loads of Acidity for Forested Ecosystems in Pennsylvania, USA: Pilot Application of a Potential National Methodology
2014
Phelan, Jennifer | Belyazid, Salim | Kurz, Daniel | Guthrie, Scott | Cajka, James | Sverdrup, Harald | Waite, Randall
Base cation weathering (BCw) rate is one of the most influential yet difficult to estimate parameters in the calculation of critical acid loads of nitrogen (N) and sulfur (S) deposition for terrestrial systems. Only the clay correlation–substrate method, a simple empirical model, has been used for estimating BCw rates for forest ecosystems in the conterminous USA and may not be suitable for application at all sites without calibration or revision. An alternate model, PROFILE, may offer an improved method to estimate BCw rates. It is a transferable, process-based model that simulates the weathering rates of groups of minerals. The objective of this study was to evaluate PROFILE using national datasets as a method to estimate BCw rates for forests in the USA, focusing on Pennsylvania (PA) as the first test state. The model paired with national datasets was successfully applied at 51 forested sites across PA. Weathering rates ranged from 119 to 9,245 eq ha⁻¹ year⁻¹ and were consistent with soil properties and regional geology. Comparisons of terrestrial critical acid loads with 2002 N and S deposition showed critical load exceedances at 53 % of the sites. This trial evaluation of PROFILE paired with national datasets in PA establishes that there are sufficient data to support the estimation of BCw rates and determination of critical acid loads for forests in the USA. However, the paired method should be applied in other locations to further evaluate the performance of the model in different regions of the country.
显示更多 [+] 显示较少 [-]Synthesis of a Novel Hydrogel Nanocomposite Coated on Cotton Fabric for Water–Oil Separation
2014
Hosseinzadeh, Hossein | Mohammadi, Sina
A new cotton-based hydrogel nanocomposite was successfully prepared by free radical graft copolymerization of acrylamide (AAm) and acrylonitrile (AN) onto fabric followed by insertion of Ag nanoparticles. Ammonium persulfate (APS) was used as an initiator in the presence of a cross-linker, methylene bisacrylamide (MBA). Fourier transform infrared, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction, and transmission electron microscopy were employed to confirm the structure of the hydrogel nanocomposite. Initially, the affecting variables onto graft polymerization (i.e. AAm, AN, MBA, APS, and silver concentrations) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. The resulted nanocomposite exhibits superhydrophilic and superhydrophobic properties. Therefore, the grafted fabric selectively separated water from oil/water mixtures with high separation efficiency. The influences of filter type, percentage of coated hydrogel on cotton, presence of silver nanoparticles, pH of solution, extracted oil type, as well as hydrogel nanocomposite on the separation efficiency of filters were also studied in detail. Moreover, pH of zero point charge (pHzₚc) of the hydrogel nanocomposite was determined by alkaline titration method, and a value of 6.5 was obtained.
显示更多 [+] 显示较少 [-]EDTA-Enhanced Thermal Washing of Contaminated Dredged Marine Sediments for Heavy Metal Removal
2014
Yin, Ke | Giannis, Apostolos | Wong, Angeline S. Y. | Wang, Jing-Yuan
Preliminary analysis on dredged marine sediments from Benoi basin in Singapore was carried out showing elevated concentrations of Zn, Cu, Pb, Cd, Cr and Ni. Ethylenediamine tetraacetic acid (EDTA) thermal washing experiments were conducted for heavy metal extraction at temperature 100 °C. Results indicated the significant efficiency of thermal washing to extract Pb, Zn and Ni. However, there was little or no influence in the removal of Cu and Cr and a slight effect to Cd indicating multiple mechanisms. In addition, agitation was found to have great influence on the removal efficiency of heavy metals as experiments without agitation performed lesser or no extraction due to limited contact of the washing solution and the dredged sediment. Sequencing processes of thermal treatment followed by EDTA washing showed limited performance, likely due to thermal stabilization of the contaminants particularly at low liquid-to-soil (L/S) ratio. Furthermore, sequential extraction analysis on the metal speciation was performed before and after thermal washing. It was revealed that metals mainly extracted from fractions bound to carbonates and Fe-Mn oxides, the relative mobile fraction. On the contrary, metals in the residual fraction displayed a considerable stability.
显示更多 [+] 显示较少 [-]Influence of pH on the Toxicity of Silver Nanoparticles in the Green Alga Chlamydomonas acidophila
2014
Oukarroum, Abdallah | Samadani, Mahshid | Dewez, David
The aim of this study was to investigate the effect of pH 4 and 7 on the cellular toxicity impact of silver nanoparticles (AgNPs) on the green alga Chlamydomonas acidophila. Changes in chlorophyll content, cellular viability, and reactive oxygen species (ROS) formation were determined permitting the characterization of the toxicity of AgNPs. Chemical characterization of AgNPs in suspension showed that nanoparticle size distribution was dependent to the pH of the culture medium, and a higher solubility was observed at pH 4 compared to that at pH 7. After 24 h of exposure, results indicated that the chlorophyll content and cellular viability decreased significantly, while the intracellular ROS production increased significantly, in relation to the increasing concentration of AgNPs (0.1–100 mg/L). Therefore, our results demonstrated that AgNP-induced toxicity was pH dependent as indicated by the cytotoxicity mediated through the induction of oxidative stress. In conclusion, the characterization of the physicochemical properties of AgNPs in aqueous solution having different pH is essential for the understanding of their toxicity impact on algal cells.
显示更多 [+] 显示较少 [-]