细化搜索
结果 1321-1330 的 4,925
Anticipating the impact of pitfalls in kinetic biodegradation parameter estimation from substrate depletion curves of organic pollutants
2019
Escuder-Gilabert, Laura | Martín-Biosca, Yolanda | Sagrado, Salvador | Medina-Hernández, María José
Accurate and reliable estimation of kinetic parameters of pollutant biodegradation processes is essential for environmental and health risk assessment. Common biodegradation models proposed in the literature, such as the nonlinear Monod equation and its simplified versions (e.g. Michaelis-Menten-like and first-order equations), are problematic in terms of accuracy of kinetic parameters due to the parameter correlation. However, a comparison between these models in terms of accuracy and reliability, related to data imprecision, has not been performed in the literature. This task is necessary, mainly because the model selection cannot be straightforward, as shown in this work. To facilitate the comparison, novel statistics summarising the accuracy and reliability of estimations are introduced. The main objective is to establish relationships between these statistics (trough new diagnostic indicators) to limit the probability of pitfalls or to avoid the negative impact of an improper model selection. Such anticipation is an imperative need in the biodegradation modelling framework and, to the best of our knowledge, it has never been performed. In order to account for accuracy, simulated data in realistic conditions are used to highlight the magnitude of pitfalls related to the model selection for estimation of the main kinetic parameters (Kₛ, μₘ and/or Vₘ). Four scenarios related to model selection are compared for the first time and, diagnostic indicators able to anticipate relevant aspects related to accuracy and reliability are introduced. Moreover, first evidences of the impact of measurement errors in other intrinsic Monod parameters (the initial biomass concentration and the microbial yield coefficient, Y), as well as the impact of the simultaneous μₘ, Kₛ and Y estimation, on the accuracy and reliability of the estimations are reported. Despite the pitfalls shown, specific applicability of even unreliable models is highlighted, and suggestions for environmental and health risk modellers are provided accordingly.
显示更多 [+] 显示较少 [-]Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging
2019
Liu, Cheng | Du, Yiheng | Yin, Hongbin | Fan, Chengxin | Chen, Kaining | Zhong, Jicheng | Gu, Xiaozhi
Dredging is frequently implemented for the reduction of internal nitrogen (N) and phosphorus (P) loadings and the control of eutrophication. Residuals during dredging activities and external pollution loadings after dredging both commonly contribute to influence the effectiveness of dredging and have been widely discussed. In the current study, the exchanges of N and P across the sediment-water interface (SWI) to these two factors were compared in a six-month field incubation experiment. The results showed that the continuous deposition of external suspended particulate matter (SPM) led ammonium nitrogen (NH₄⁺N) and soluble reactive phosphorus (SRP) fluxes across the newly formed SWI to increase by factors of 4.16 and 12.71, respectively, while residual material caused the same fluxes to increase by factors of 2.06 and 5.06. Both the deposition of external SPM and the residual matter led to higher increase of the fluxes of P across the SWI than those of the fluxes of N across the SWI after dredging. The SPM easily adsorbed P in the water due to extensive adsorption of water soluble organic matter (consisting primarily of easily-decomposed humic-like substances), iron, and aluminum. However, the decomposition of organic matter in the SPM after the deposition on the dredged sediment accelerated the dissolution of redox-sensitive P and organic P across the SWI after dredging. Both the increase in the fluxes of N and P across the SWI would further increase the concentrations of N and P in the overlying water and thereby aggravate the eutrophication status in lakes. More frequent dredging operations might be necessary to reduce the fluxes of N and P from the sediment due to the continuous influence of the external SPM and the residual matter.
显示更多 [+] 显示较少 [-]Response of soil microbes after direct contact with pyraclostrobin in fluvo-aquic soil
2019
Zhang, Cheng | Zhou, Tongtong | Zhu, Lusheng | Juhasz, Albert | Du, Zhongkun | Li, Bing | Wang, Jun | Wang, Jinhua | Sun, Yan'an
Agricultural chemicals affect the daily life of food production. However, the abuse of pesticides led to the damage to the environment. Pyraclostrobin (PYR) is commonly used strobilurin fungicide which inhibits fungal respiration through mitochondrial cytochrome-b and c1 inhibition. There is increasing concerns that PYR may adversely impact the environment. Although impacts on ecological receptors have been detailed, little information is available regarding the toxicological impact of PYR on soil microbial community dynamics and functioning. Understanding the potential impact on soil microbial populations is important. The activity of enzymes (urease, dehydrogenase, and β-glucosidase) and diversity of microbial community structure using high-throughput 16S rRNA sequencing were evaluated at different soil-PYR concentrations (0.1, 1.0, and 2.5 mg/kg) over a 48 day exposure period. Urease activity remained stable in general. Pyraclostrobin inhibited dehydrogenase activity during the exposure period. The β-glucosidase activity was inhibited on day 28 and induced on day 48 at 1.0 and 2.5 mg/kg. The genera Gp6, Exiguobacterium, Gp4, and Gemmatimonas were both the dominant genera and significantly changed genera. Pyraclostrobin had different level of influence on soil microbes containg their enzyme activity and community structure. The purpose of the current study was to examine the impact of PYR addition on soil enzymes as an indicator of soil health and to have complementary data on the impact of microbial populations. Furthermore, the study may also be the guide for further rational pesticide selection.
显示更多 [+] 显示较少 [-]Characteristics of organic phosphorus fractions in soil from water-level fluctuation zone by solution 31P-nuclear magnetic resonance and enzymatic hydrolysis
2019
Qu, Ying | Wang, Chao | Guo, Jinsong | Huang, Junjie | Fang, Fang | Xiao, Yan | Ouyang, Wenjuan | Lu, Lunhui
Phosphorus (P) is an essential nutrient element for biological growth that can contribute to eutrophication in aquatic ecosystems. Water trophic status and algae growth are primarily related to the content of bioavailable P, which is primarily related to enzymatically hydrolysable organic P(EHOP) and dissolved inorganic P(IP). In this study, soil samples from the water-level fluctuation zone (WLFZ) were collected from a tributary of the Three Gorges Reservoir (TGR) to characterize the properties of organic P(OP) fractions using solution ³¹P-nuclear magnetic resonance (NMR) and enzymatic hydrolysis. ³¹P-NMR showed that orthophosphate was the main part of the bioavailable P in the WLFZ soil and accounted for 80.4% of the NaOH-EDTA extractable total P (NaOH-EDTA TP), while phosphate monoester accounted for 60.5% of NaOH-EDTA extractable OP (NaOH-EDTA OP). The soil properties and replenishment from the mainstream of the Yangtze River to the Pengxi River have a certain effect on the content and distribution of P forms in the WLFZ soil of the tributary. The EHOP accounted for 28.1% of the NaOH-EDTA OP, and a significant positive correlation was observed between labile monoester P and EHOP and organic matter (OM). The water-soluble OP(H₂O-OP), bicarbonate-extractable OP(NaHCO₃-OP), and Fe- and Al-associated OP(Fe/Al-OP) were significantly hydrolyzed by phosphatase and thus exhibited great release potential. The ranking of the bioavailability of OP was Fe/Al-OP > H₂O-OP > NaHCO₃-OP. Phytate-like P were mainly found in H₂O-OP and NaHCO₃-OP, which indicated that periodic submersion–emersion cycles promoted the release of phytate-like P from Fe/Al-OP into the water column of the TGR. These observations suggest that when the external P input was effectively controlled, a huge risk of release of the internal OP from the WLFZ soil, and the biogeochemical cycling of the bioavailable P played an important role in maintaining the eutrophication of the reservoir.
显示更多 [+] 显示较少 [-]Cellular response and extracellular vesicles characterization of human macrophages exposed to fine atmospheric particulate matter
2019
Martin, Perrine J. | Héliot, Amélie | Trémolet, Gauthier | Landkocz, Yann | Dewaele, Dorothée | Cazier, Fabrice | Ledoux, Frédéric | Courcot, Dominique
Exposure to fine atmospheric Particulate Matter (PM) is one of the major environmental causes involved in the development of inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD) or asthma. When PM is penetrating in the pulmonary system, alveolar macrophages represent the first line of defense, in particular by triggering a pro-inflammatory response, and also by their ability to recruit infiltrating macrophages from the bone marrow. The aim of this in vitro study was to evaluate the gene expression and cytokine production involved in the toxicological and inflammatory responses of infiltrating macrophages, as well as the Extracellular Vesicles (EVs) production, after their exposure to PM. The ability of these EVs to convey information related to PM exposure from exposed macrophages to pulmonary epithelial cells was also evaluated.Infiltrating macrophages respond to fine particles exposure in a conventional manner, as their exposure to PM induced the expression of Xenobiotic Metabolizing Enzymes (XMEs) such as CYP1A1 and CYP1B1, the enzymes involved in oxidative stress SOD2, NQO1 and HMOX as well as pro-inflammatory cytokines in a dose-dependent manner. Exposure to PM also induced a greater release of EVs in a dose-dependent manner. In addition, the produced EVs were able to induce a pro-inflammatory phenotype on pulmonary epithelial cells, with the induction of the release of IL6 and TNFα proinflammatory cytokines. These results suggest that infiltrating macrophages participate in the pro-inflammatory response induced by PM exposure and that EVs could be involved in this mechanism.
显示更多 [+] 显示较少 [-]Bisphenol S-induced chronic inflammatory stress in liver via peroxisome proliferator-activated receptor γ using fish in vivo and in vitro models
2019
Qiu, Wenhui | Yang, Ming | Liu, Jingyu | Xu, Hai | Luo, Shusheng | Wong, Minghung | Zheng, Chunmiao
Bisphenol S (BPS) has been widely used as a bisphenol alternative in recent few years. However, with mounting evidence suggesting that the presence of BPS in the environment also poses risks to ecosystems and human health, we decided to use the juvenile common carp (Cyprinus carpio) and its primary macrophages as in vivo and in vitro models to examine if BPS is a safe substitute of BPA. The present study evaluated the immune responses of chronic BPS exposure and their mechanisms of action associated with peroxisome proliferator-activated receptor (PPAR) signaling pathway. Potential oxidative stress and pro-inflammatory effects of BPS exposure were identified in fish liver after 60-day exposure, based on the increased reactive oxygen species (ROS) production, antioxidant capacity, NO production, lipid peroxidation, and induction of inflammatory cytokine expression, as well as acute phase protein levels of C-reactive protein, immunoglobulin M, lysozyme, and complement component 3. Moreover, pparγ, PPAR pathway-associated genes retinoid x receptor α (rxrα) and nuclear factor-κb (nfκb) presented a rough concentration-dependent alteration after BPS exposure. An acute BPS exposure to the isolated primary macrophages from juvenile common carp was performed to help elucidate gene expression patterns of pparγ, rxrα, and nfκb in a typical immune cell model, the results were consistent with what we found in vivo experiments for long-term BPS exposure. Furthermore, with coexposure to BPS and a PPARγ antagonist, the restriction of PPAR signaling pathway significantly inhibited the induction of ROS and the mRNA level of interleukin-1β, confirming the involvement of PPAR pathway in BPS-induced chronic inflammatory stress in liver.
显示更多 [+] 显示较少 [-]Ozone and cardiac arrest: The role of previous hospitalizations
2019
Raza, Auriba | Dahlquist, Marcus | Jonsson, Martin | Hollenberg, Jacob | Svensson, S. Leif | Lind, Tomas | Ljungman, Petter L.S.
Several studies have reported associations between exposure to particulate matter and incidence of out-of-hospital cardiac arrest (OHCA) and some have observed associations with ozone (O3). There are no studies investigating susceptibility based on previous disease history to short-term O3 exposure and the risk of OHCA.To investigate the role of previous cardiovascular-related hospitalizations in modifying the associations between the risk of OHCA and short-term increase in O3 concentrations.A time-stratified case-crossover analysis of 11,923 OHCA registered in the Swedish Register for Cardiopulmonary Resuscitation from 2006 to 2014 was performed. Using personal identification numbers, OHCA were linked to all previous hospitalizations in Sweden since 1987 to create susceptible groups based on the principal diagnosis code at discharge. Susceptibility was based on hospitalization for i) acute myocardial infarction; ii) heart failure; iii) arrhythmias; iv) diabetes; v) hypertension; and vi) stroke. Moving 2 and 24-h averages for O3, PM2.5, PM10, and NO2 were constructed from hourly averages.A 10 μg/m3 higher 2-h average O3 concentration was associated with a 2% higher risk of OHCA (95% CI, 0% 3%). Associations were similar for 24-h average O3 and in individuals with or without hospitalizations for AMI, heart failure, diabetes, hypertension or stroke. Individuals with previous hospitalizations for arrhythmias had a lower risk of OHCA with higher O3. No associations were observed for other pollutants.Short-term exposure to O3 was associated with an elevated risk of OHCA, however, previous hospitalizations for cardiovascular diseases were not associated with additionally augmented risks.
显示更多 [+] 显示较少 [-]Contribution of plant species to the high N retention capacity of a subalpine meadow undergoing elevated N deposition and warming
2019
Pornon, André | Boutin, Marion | Lamaze, Thierry
While numerous studies have examined the effect of N deposition on ecosystem N retention, few have analyzed the involvement of plant species and climate warming in this process. We experimentally investigated the effects of increasing N deposition (Nexo) and climate warming on the fate of Nexo in a subalpine meadow and established the involvement of plant species. Using 15N tracer, we tracked Nexo sprayed on the vegetation in belowground and aboveground plant biomasses (AGB) and in bulk soil over three growing seasons. We assessed the Nexo absorption capacity of plant species and the contribution of Nexo to their AGB N pool. The meadow retained a large proportion of Nexo (≈65%, mostly in AGB) for depositions up to four times the background N rate. Nexo present in the meadow compartments in year 2 was still present in year 3, suggesting that the ecosystem was unsaturated after three years of high N input. Nexo retention resulted more from an increase in N concentration in plant tissues than from the increase in AGB. The species-specific Nexo absorption capacity was inversely related to their AGB N concentration. Nexo accounted for up to 40% of total AGB N depending on the species and the N treatments. The contribution of species to ecosystem Nexo retention more contingent on their AGB than on their relative cover in the community, ranked as follows: C. vulgaris (14.0%) > N. stricta (7.0%) > other Poaceae = C. caryophyllea (2.5%) > other Eudicotyledons (1.5%) > non-vascular species = P. erecta > Fabaceae (0.8–0.2%). Climate warming increased AGB and decreased tissue N concentration. No warming-Nexo interaction was observed. Thus, Pyrenean subalpine meadows that have not undergone a decline in plant species richness in recent decades paradoxically display a high potential to sequester atmospheric N deposition.
显示更多 [+] 显示较少 [-]1,4-Dioxane cosolvency impacts on trichloroethene dissolution and sorption
2019
Milavec, Justin | Tick, Geoffrey R. | Brusseau, Mark L. | Carroll, Kenneth C.
Solvent stabilizer 1,4-dioxane, an emerging recalcitrant groundwater contaminant, was commonly added to chlorinated solvents such as trichloroethene (TCE), and the impact of co-disposal on contaminant transport processes remains uncertain. A series of batch equilibrium experiments was conducted with variations of 1,4-dioxane and TCE composition to evaluate aqueous dissolution of the two components and their sorption to aquifer sediments. The solubility of TCE increased with increasing amounts of 1,4-dioxane, indicating that 1,4-dioxane acts as a cosolvent causing solubility enhancement of co-contaminants. The solubilization results compared favorably with predictions using the log-linear cosolvency model. Equilibrium sorption coefficients (Kd and Kf) were also measured for different 1,4-dioxane and TCE compositions, and the findings indicate that both contaminants adsorb to aquifer sediments and TCE Kd values increased with increasing organic matter content. However, the Kd for TCE decreased with increases in 1,4-dioxane concentration, which was attributed to cosolvency impacts on TCE solubility. These findings further advance our understanding of the mass-transfer processes controlling groundwater plumes containing 1,4-dioxane, and also have implications for the remediation of 1,4-dioxane contamination.
显示更多 [+] 显示较少 [-]Particle emissions of Euro VI, EEV and retrofitted EEV city buses in real traffic
2019
Järvinen, Anssi | Timonen, Hilkka | Karjalainen, Panu | Bloss, Matthew | Simonen, Pauli | Saarikoski, Sanna | Kuuluvainen, Heino | Kalliokoski, Joni | Dal Maso, Miikka | Niemi, Jarkko V. | Keskinen, Jorma | Rönkkö, Topi
Exhaust emissions from traffic significantly affect urban air quality. In this study, in-traffic emissions of diesel-fueled city buses meeting enhanced environmentally friendly vehicle (EEV) and Euro VI emission limits and the effects of retrofitting of EEV buses were studied on-road by chasing the buses with a mobile laboratory in the Helsinki region, Finland. The average emission factors of particle number (PN), particle mass (PM1) and black carbon mass (BC) were 0.86·1015 1/kgfuel, 0.20 g/kgfuel and 0.10 g/kgfuel, respectively, for EEV buses. For Euro VI buses, the emissions were below 0.5·1015 1/kgfuel (PN), 0.07 g/kgfuel (PM1) and 0.02 g/kgfuel (BC), and the exhaust plume concentrations of these pollutants were close to the background concentrations. The emission factors of PM1 and BC of retrofitted EEV buses were at the level of Euro VI buses, but their particle number emissions varied significantly. On average, the EEV buses were observed to emit the largest amounts of nanocluster aerosol (NCA) (i.e., the particles with size between 1.3 and 3 nm). High NCA emissions were linked with high PN emissions. In general, results demonstrate that advanced exhaust aftertreatment systems reduce emissions of larger soot particles but not small nucleation mode particles in all cases.
显示更多 [+] 显示较少 [-]