细化搜索
结果 1331-1340 的 7,288
Generation of novel n-p-n (CeO2-PPy-ZnO) heterojunction for photocatalytic degradation of micro-organic pollutants 全文
2022
Rajendran, Saravanan | Hoang, Tuan K.A. | Trudeau, Michel L. | Jalil, A.A. | Naushad, Mu | Awual, Md Rabiul
Recently, hetero junction materials (p-n-p and n-p-n) have been developed for uplifting the visible light activity to destroy the harmful pollutants in wastewater. This manuscript presents a vivid description of novel n-p-n junction materials namely CeO₂-PPy-ZnO. This novel n-p-n junction was applied as the photocatalyst in drifting the mobility of charge carriers and hence obtaining the better photocatalytic activity when compared with p-n and pure system. Such catalyst's syntheses were successful via the copolymerization method. The structural, morphological and optical characterization techniques were applied to identify the physio-chemical properties of the prepared materials. Additionally, the superior performance of this n-p-n nanostructured material was demonstrated in the destruction of micro organic (chlorophenol) toxic wastes under visible light. The accomplished ability of the prepared catalysts (up to 92% degradation of chlorophenol after 180 min of irradiation) and their profound degradation mechanism was explained in detail.
显示更多 [+] 显示较少 [-]Functionalizing biochar by Co-pyrolysis shaddock peel with red mud for removing acid orange 7 from water 全文
2022
Zhang, Ming | Lin, Kun | Zhong, Yuchi | Zhang, Dong | Ahmad, Mahtab | Yu, Jie | Fu, Hailu | Xu, Liheng | Wu, Songlin | Huang, Longbin
Biochar modification by metal/metal oxide is promising for improving its adsorption capability for contaminants, especially the anions. However, conventional chemical modifications are complicated and costly. In this study, novel Fe/Fe oxide loaded biochars (RMBCs) were synthesized from a one-step co-pyrolysis of red mud (RM) and shaddock peel (SP), and their potential application for removing anionic azo dye (acid orange 7, AO7) from the aqueous environment was evaluated. Fe from red mud was successfully loaded onto biochars pyrolyzed at 300–800 °C, which presented from oxidation form (Fe₂O₃) to the reduction forms (FeO and Fe⁰) with increasing pyrolysis temperature. The RMBC produced at 800 °C with RM:SP mass ratio of 1:1 (RMBC800₁:₁) exhibited the best capability for AO7 removal (∼32 mg/g), attributed to both adsorption and degradation. The higher surface area of RMBC800₁:₁ and its greater affinity for AO7 led to the higher adsorption. In addition, RMBC800₁:₁-induced degradation of AO7 was another key mechanism for AO7 removal. The reduction forms of Fe (FeO or Fe⁰) in RMBC800₁:₁ may provide electrons for breaking down the azo bond in AO7 molecules and result in degradation, which is further enhanced in acid conditions due to the participation of readily release of Fe²⁺ and the available H⁺ in AO7 degradation. Furthermore, RMBC800₁:₁ can be easily separated from the treated water by using magnetic field, which significantly benefits its separation in wastewater treatment.
显示更多 [+] 显示较少 [-]Ab initio calculation of the adsorption of As, Cd, Cr, and Hg heavy metal atoms onto the illite(001) surface: Implications for soil pollution and reclamation 全文
2022
Qi, Chongchong | Xu, Xinhang | Chen, Qiusong | Liu, Hui | Min, Xiaobo | Fourie, A. B. (Andries Benjamin) | Chai, Liyuan
Elucidating the mechanisms of heavy metal (HM) adsorption on clay minerals is key to solving HM pollution in soil. In this study, the adsorption of four HM atoms (As, Cd, Cr, and Hg) on the illite(001) surface was investigated using density functional theory calculations. Different adsorption configurations were investigated and the electronic properties (i.e., adsorption energy (Eₐd) and electron transfer) were analyzed. The Eₐd values of the four HM atoms on the illite(001) surface were found to be As > Cr > Cd > Hg. The Eₐd values for the most stable adsorption configurations of As, Cr, Cd, and Hg were −1.8554, −0.7982, −0.3358, and −0.2678 eV, respectively. The As atoms show effective chemisorption at all six adsorption sites, while Cd, Cr, and Hg atoms mainly exhibited physisorption. The hollow and top (O) sites were more favorable than the top (K) sites for the adsorption of HM atoms. The Gibbs free energy results show that the illite(001) surface was energetically favorable for the adsorption of As and Cr atoms under the influence of 298 K and 1 atm. After adsorption, there was a redistribution of positions and reconfiguration of the chemical bonding of the surface atoms, with a non-negligible influence around the upper surface atoms. Bader charge analysis shows electrons were transferred from the surface to the HM atoms, and a strong correlation between the valence electron variations and the adsorption energy was observed. HM atoms had a high electronic state overlap with the surface O atoms near the Fermi energy level, indicating that the surface O atoms, though not the topmost atoms around the surface, significantly influence HM adsorption. The above results show illite(001) preferentially adsorbed As among all four investigated HM atoms, indicating that soils containing a high proportion of illite might be more prone to As pollution.
显示更多 [+] 显示较少 [-]Perfluoroalkyl acids (PFAAs) in the aquatic food web of a temperate urban lake in East China: Bioaccumulation, biomagnification, and probabilistic human health risk 全文
2022
Chu, Kejian | Lü, Ying | Hua, Zulin | Liu, Yuanyuan | Ma, Yixin | Gu, Li | Gao, Chang | Yu, Liang | Wang, Yifan
The bioaccumulation and biomagnification of perfluoroalkyl acids (PFAAs) in temperate urban lacustrine ecosystems is poorly understood. We investigated the occurrence and trophic transfer of and probabilistic health risk from 15 PFAAs in the food web of Luoma Lake, a temperate urban lake in East China. The target PFAAs were widely distributed in the water (∑PFAA: 77.09 ± 9.07 ng/L), suspended particulate matter (SPM) (∑PFAA: 284.07 ± 118.05 ng/g dw), and sediment samples (∑PFAA: 67.77 ± 17.96 ng/g dw) and occurred in all biotic samples (∑PFAA: 443.27 ± 124.89 ng/g dw for aquatic plants; 294.99 ± 90.82 for aquatic animals). PFBA was predominant in water and SPM, with 40.11% and 21.35% of the total PFAAs, respectively, while PFOS was the most abundant in sediments (14.11% of the total PFAAs) and organisms (14.33% of the total PFAAs). Sediment exposure may be the major route of biological uptake of PFAAs. The PFAA accumulation capacity was the highest in submerged plants, followed by emergent plants > bivalves > crustaceans > fish > floating plants. Long-chain PFAAs were biomagnified, and short-chain PFAAs were biodiluted across the entire lacustrine food web. PFOS exhibited the greatest bioaccumulation and biomagnification potential among the target PFAAs. However, biomagnification of short-chain PFAAs was also observed within the low trophic-level part of the food web. Human health risk assessment indicated that perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) posed health risks to all age groups, while the other PFAAs were unlikely to cause immediate harm to consumers in the region. This study fills a gap in the knowledge of the transfer of PFAAs in the food webs of temperate urban lakes.
显示更多 [+] 显示较少 [-]Artificial root exudates restore microbial functioning in a metal contaminated, barren, inactive soil 全文
2022
Vaidya, Bhagyashree P. | Hagmann, Diane F. | Haramuniz, Jamila | Krumins, Jennifer Adams | Goodey, Nina M.
Restoring enzyme function in barren, brownfield soils using green strategies can improve microbial functioning and enable phytoremediation. It is known that adding simple, readily metabolized substrates secreted by growing plant roots (root exudates) or a laboratory prepared solution of root exudates (artificial root exudates) can stimulate soil microbial function. It is not known whether and how well this strategy works in a contaminated, low functioning soil from an industrial barren site because contaminants in the barren soil might inhibit microbial survival and functioning, or the microbial community might not be adapted to functionally benefit from root exudates. The objective of this study was to determine whether artificial root exudates stimulate microbial function in a barren soil. We collected soils from a barren brownfield (25R) site and an adjacent vegetated brownfield site (25F), with low and high enzyme activities, respectively. We subjected both soils to three treatments: switchgrass (native to the site), artificial root exudates, and a combination of switchgrass and artificial root exudates. We measured enzymatic activity, plant growth, soil moisture, organic matter content, and easily extractable glomalin content over 205 days. By day 157, artificial root exudates increased the phosphatase activity by 9-fold in previously vegetated brownfield soil and by 351-fold in barren brownfield soil. When exudates were added to the barren soil, the plant shoot mass was higher (52.2 ± 2.5 mg) than when they were not (35.4 ± 3.6 mg). In both soils, adding artificial root exudates significantly increased the percent moisture, organic matter, and glomalin content. Treating contaminated, barren soil with artificial root exudates resulted in increased soil microbial function and improved soil properties that might promote a hospitable habitat to support vegetation in such extreme environments. Summary: We added artificial root exudates to stimulate enzymatic function in two contaminated soils. Plant shoot mass, soil percent moisture, glomalin content, and organic matter content significantly increased due to the addition of artificial root exudates to the study soils. Microbially-mediated phosphatase activity was established in a barren, previously inactive, polluted soil.
显示更多 [+] 显示较少 [-]Assessing the effect of fine particulate matter on adverse birth outcomes in Huai River Basin, Henan, China, 2013–2018 全文
2022
Zhang, Huanhuan | Zhang, Xiaoan | Zhang, Han | Luo, Hongyan | Feng, Yang | Wang, Jingzhe | Huang, Cunrui | Yu, Zengli
Previous studies have indicated that maternal exposure to particles with aerodynamic diameter <2.5 μm (PM₂.₅) is associated with adverse birth outcomes. However, the critical exposure windows remain inconsistent. A retrospective cohort study was conducted in Huai River Basin, Henan, China during 2013–2018. Daily PM₂.₅ concentration was collected using Chinese Air Quality Reanalysis datasets. We calculated exposures for each participant based on the residential address during pregnancy. Binary logistic regression was used to examine the trimester-specific association of PM₂.₅ exposure with preterm birth (PTB), low birth weight (LBW) and term LBW (tLBW), and we further estimated monthly and weekly association using distributed lag models. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for each 10 μg/m³ increase in PM₂.₅ exposure. Stratified analyses were performed by maternal age, infant gender, parity, and socioeconomic status (SES). In total, 196,780 eligible births were identified, including 4257 (2.2%) PTBs, 3483 (1.8%) LBWs and 1770 (0.9%) tLBWs. Maternal PM₂.₅ exposure during the second trimester were associated with the risk of PTB and LBW. At the monthly level, the PTB and LBW risks were associated with PM₂.₅ exposure mainly in the 4th -6th month. By estimating the weekly-specific association, we observed that critical exposure windows of PM₂.₅ exposure and PTB were in the 18th- 27th gestational weeks. Stronger associations were found in younger, multiparous mothers and those with a female baby and in low SES. In conclusion, the results indicate that maternal PM₂.₅ exposure during the second trimester was associated with PTB and LBW. Younger, multiparous mothers and those with female babies and in low SES were susceptible.
显示更多 [+] 显示较少 [-]The zebrafish (Danio rerio) embryo-larval contact assay combined with biochemical biomarkers and swimming performance in sewage sludge and hydrochar hazard assessment 全文
2022
Hydrothermal carbonization is considered a powerful technology to convert sewage sludge (SS) into a valuable carbonaceous solid known as hydrochar (HC). Up to now criteria for landfill application of SS and HC are based only on physicochemical properties and levels of pollutant residues. Nevertheless, to ensure their safe environmental applications it is mandatory to develop biosensors which can provide relevant information on their toxic potential for natural ecosystems. Therefore, this study aimed to assess the suitability of a contact assay using zebrafish embryo/larvae combined with sub-lethal end-points to evaluate the hazard associated with SS and related HC exposure. A suite of biomarkers was also applied on larvae, related to detoxification and oxidative stress as the activity of Ethoxyresorufin-O-deethylase, glutathione-S-transferase, and catalase, the content of reactive oxygen species and the behavioral assay using the DanioVision™ chamber. Legacy priority pollutants were also measured either in SS and HC tested samples and in contact waters. The exposure to SS caused higher lethality compared to HC. No significant changes in the activity of oxidative stress markers was observed upon exposure to both matrices. The behavioral test showed a hypoactivity condition in larvae exposed to both SS and HC with the effects of SS stronger than HC. Chemical analysis revealed the presence of trace elements and halogenated compounds in either SS, HC. Heavy metals were also released in contact waters, while volatile hydrocarbons (C6–C10) and halogenated compounds resulted below LOD (<0.05 μ L⁻¹). Our study highlights the suitability of zebrafish embryotoxicity test, coupled with behavioral traits, as screening tool for assessing potential risks, associated with the landfill application of both SS and HC, for aquatic wildlife.
显示更多 [+] 显示较少 [-]Fabrication of activated carbon supported modified with bimetallic-platin ruthenium nano sorbent for removal of azo dye from aqueous media using enhanced ultrasonic wave 全文
2022
Herein, activated carbon supported modified with bimetallic-platin ruthenium nano sorbent (PtRu@AC) was synthesized by a thermal decomposition process and used in the removal of methylene blue (MB) from aqueous solutions. The synthesized nano sorbents were characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS) spectroscopic techniques. The data obtained from characterization studies showed that PtRu@AC nano sorbent was highly crystalline and in a form of PtRu alloy with a monodispersed composition. The results indicated that the maximum adsorption capacity (qemax) for the removal of MB with PtRu@AC under optimum conditions was detected to be 1.788 mmol/g (569.4 mg/g). The experimental kinetic results of the study revealed that the adsorption of methylene blue was found to be more compatible with the false second-order model compared to some tested models. Calculations for thermodynamic functions including enthalpy change (ΔHo), entropy change (ΔSo), and Gibbs free energy change (ΔGo) values were performed to get an idea about the adsorption mechanism. As a result, the synthesized PtRu@AC nano adsorbent was detected as a highly effective adsorbent material in the removal of MB from aquatic mediums.
显示更多 [+] 显示较少 [-]Spatial distribution of microplastics in Chinese freshwater ecosystem and impacts on food webs 全文
2022
Over the past two decades, there has been a lot of discussion about the rapid increase of microplastics (MPs) due to their persistence, ubiquity, and toxicity. The widespread distribution of MPs in various freshwater ecosystems makes them available for different trophic levels biota. The ingestion and trophic transfer of MPs may induce potential impacts on freshwater food webs. Therefore, this systematic review is an in-depth review of 51 recent studies to confirm the spatial distribution of MPs in the Chinese freshwater ecosystem including water, sediment and biota, exposure pathways, and impacts on freshwater food webs. The result suggested the white, transparent and colored, Polypropylene (PP) and Polyethylene (PE) of <1 mm fibers were dominant in Chinese freshwaters. The uptake of MPs by various freshwater organisms as well as physiological, biological and chemical impacts on food webs were also elucidated. At last, some limitations were discussed for future studies to better understand the effects of MPs on food webs.
显示更多 [+] 显示较少 [-]Distribution of antibiotic resistance genes from human and animal origins to their receiving environments: A regional scale survey of urban settings 全文
2022
Antibiotic resistance is a growing problem for ecosystem health and public healthcare. Hence, the transmission of antibiotic resistance from human and animal origins to natural environments requires careful investigation. In this study, nine antibiotic resistance genes (ARGs), three mobile genetic elements (MGEs), and their relations with antibiotics, heavy metals, and microbiota were investigated in 16 sample sites (Xinxiang, China). Fluoroquinolones (0.13–14.22 μg/L) were most abundant in hospital effluent and oxytetracycline (251.86–5817.47 μg/kg) in animal manure. Animal manure showed the highest levels of zinc (80.79–2597.14 mg/kg) and copper (32.47–85.22 mg/kg), possibly affecting the prevalence of intI1 and aac(6′)-Ib genes. Aminoglycoside and sulfonamide resistance genes (aac(6’)-Ib, aadA, and sul1) were the main ARGs in this area. In addition, the detected ARGs and MGEs were higher in animal manure than in hospital effluent, except for the sul1 gene. On the other hand, the incomplete removal of antibiotics (29.76–100%), heavy metals (31.25–100%), and ARGs (1–3 orders of magnitude) in MWWTPs resulted in the accumulation of these contaminants in the receiving river. Network analysis suggested that the potential hosts (Jeotgalibaca, Atopostipes, Corynebacterium_1, etc.) of ARGs were more predominant in animal manure rather than hospital effluent, indicating a higher ARG transfer potential in animal manure compared with hospital sources. These results provide useful insights into the different migration and dissemination routes of antibiotics, heavy metals, ARGs, and microbiota from anthropogenic and animal origins to their receiving environments via MWWTP discharge and manure fertilization.
显示更多 [+] 显示较少 [-]