细化搜索
结果 1361-1370 的 3,208
Bulk Deposition of Pesticides in a Canadian City: Part 1. Glyphosate and Other Agricultural Pesticides 全文
2015
Farenhorst, Annemieke | Andronak, L. A. | McQueen, R. D. A.
Winnipeg is a city in the Canadian Prairies with a population of about 600,000. Like many other cities and towns in this region of Canada, the city is surrounded by agriculture. Weekly bulk deposition samples were collected from May to September in 2010 and 2011 and analyzed for 43 pesticides used in Prairie agriculture. Fourteen herbicides, five herbicide metabolites, two insecticides, and two fungicides were detected with 98.5 % of the samples containing chemical mixtures. Glyphosate is the most widely used pesticide in Prairie agriculture and accounted for 65 % of the total pesticide deposition over the 2 years. Seasonal glyphosate deposition was more than five times larger in 2011 (182 mm rain) than 2010 (487 mm rain), suggesting increased glyphosate particulate transport in the atmosphere during the drier year. The seasonal deposition of ten other frequently herbicides was significantly positively correlated with the amount of herbicides applied both in and around Winnipeg (r = 0.90, P < 0.001) and with agricultural herbicide use around Winnipeg (r = 0.63, P = 0.05), but not with agricultural herbicide use province wide (P = 0.23). Herbicides 2,4-D (2,4-dichlorophenoxyacetic acid), dicamba, and mecoprop had known urban applications and were more consistently detected in samples relative to bromoxynil and 2-methyl-4-chlorophenoxyacetic acid (MCPA) whose frequency of detections decreased throughout August and September. The Canadian Water Quality Guidelines for irrigation water were frequently exceeded for both dicamba (75 %) and MCPA (49 %) concentrations in rain. None of glyphosate concentrations in rain exceeded any of the Canadian Water Quality Guidelines established for this herbicide.
显示更多 [+] 显示较少 [-]Phytotoxicity of Phenanthrene and Its Nitrogen Polycyclic Aromatic Hydrocarbon Analogues in Ageing Soil 全文
2015
Anyanwu, Ihuoma N. | Semple, K. T. (Kirk T.)
The impacts of phenanthrene and its nitrogen-containing analogues (N-PAHs) on seedling emergence and plant biomass of two terrestrial plant species, Lactuca sativa (lettuce) and Lolium perenne (rye grass), were investigated in soil over a 21-day exposure period. The data over 0–90-day soil-chemical contact time revealed that seedling emergence and plant biomass were significantly affected by N-PAHs even at the lowest concentration of 10 mg/kg. N-PAH amended soils showed greater inhibitory effects on seedling emergence and early plant biomass than phenanthrene amendments with incubations overtime. The degree of inhibition (% inhibition) on seedling emergence over time was 33.3 % (lettuce) and 46.7 % (rye grass) for the phenanthrene, and 53.3 % (lettuce) and 93.3 % (rye grass) for the N-PAHs, respectively, suggesting greater sensitivity of seedling emergence and early plant biomass on N-PAH-contaminated soil. The results from this study will contribute to data gaps for poorly managed chemicals/chemical groups for environmental risk assessment and might be useful in the development of new approaches for hazard assessment of contaminated systems.
显示更多 [+] 显示较少 [-]Salinization and Yield Potential of a Salt-Laden Californian Soil: an In Situ Geophysical Analysis 全文
2015
Cassel, Florence | Goorahoo, Dave | Sharmasarkar, Shankar
Salinization is a global problem, including in California, USA, where over two million hectares of irrigated lands have deteriorated due to salt loading. Because of freshwater shortage, some farmlands are also irrigated with agricultural drainage water, which further exacerbates the salinization process. With the objectives of rapidly quantifying spatial and temporal progression of salinization and identifying yield potential for a high-value crop, we conducted 2-year salinity surveys in a salt-affected farm in California by utilizing a dual dipole electromagnetic induction technology (EM38). The EM-predicted conductivity (ECₑ) was consistent with the ground-truth soil data ECₛ and increased with depth. About 50 and 25 % of the ECₑ data in moderately (A) and severely (B) affected salinity zones surpassed 500 and 1000 mS m⁻¹ levels, respectively. In the northern part of B, up to 70 % samples remained within 500–1000 mS m⁻¹ range. There was eastbound salt loading in the northern and southern parts of A. Rhizosphere salinity showed spatial dependence up to 500 m lateral distance. The shifts in salinity could be due to dispersion and leaching of solutes. High crop yield reduction was estimated in the southwestern and northeastern parts of the field that had typically elevated ECₑ. Around 43 % surveyed area was conducive to attaining 80 % of full yield potential, and the central part of the field was determined to be most suitable for crop growth. Coupling of EM results with production values indicated that under elevated saline condition, it would be feasible to grow a high-value tomato crop.
显示更多 [+] 显示较少 [-]Speciation in Application Environments for Dissolved Carbon Dioxide Sensors 全文
2015
Bhatia, Sonja | Risk, David
Measurement of the concentration of dissolved carbon dioxide in ground and surface aqueous environments is needed for a wide variety of scientific and industrial applications. These environments can be fresh, saline, or transitional in nature and can be hydrochemically complex. A next generation of sensors, like fiber-optic sensors, offer real-time, direct, distributed sensing of dissolved carbon dioxide and are an improvement over current technology for many applications; however, these sensors may be susceptible to signal disturbance when deployed in hydrochemically complex, natural environments. This complexity can best be characterized using hydrochemical modeling techniques. The modeling software, phreeqc 2.18, was used to conduct a comprehensive review to gain perspective on published data of natural water samples. Freshwater, saltwater, and transitional environments were characterized in terms of the distribution of carbonate and non-carbonate species present. Saline, transitional, and deep freshwater environments had the broadest range of carbonate distribution and species that may cross-interfere with sensor response. These data should be used to build complex laboratory test solutions that mimic the natural environment for use in sensor development. In some cases, specially engineered membranes may be required to mitigate the potentially cross-interfering effect of these ions.
显示更多 [+] 显示较少 [-]Constructed Wetland for Treating Effluent from Subtropical Aquaculture Farm 全文
2015
Travaini-Lima, Fernanda | da Veiga, Márcia Andreia Mesquita Silva | Sipaúba-Tavares, Lúcia Helena
A free water surface flow constructed wetland (CW) was designed to evaluate the capacity of this biological treatment system, which receives wastewater from aquaculture and upflow anaerobic sludge blanket (UASB) reactors, to retain heavy metal. The purpose of this study was to determine the role of the sediment and the macrophytes Cyperus giganteus, Typha domingensis, Eichhornia crassipes, and Pontederia cordata in accumulating Al, Cd, Cr, Cu, Fe, Ni, Mn, Pb, and Zn, during the dry (winter) and rainy (summer) seasons. In general, the concentrations and mass loading of heavy metals in the outlet water were lower than in the inlet water. The highest removal efficiency rates of water (mainly mass removal) occurred in the dry season. In the rainy season, the probable low oxygen level in the upper layer of sediment resulted in a release of reduced metals into the water because of organic matter mineralization and an increase in depth. This, coupled with an increase in the hydraulic loading rate (HLR), affected the efficiency removal in this season. The metals were especially immobilized as a result of the sedimentation process and could be removed weakly via macrophyte uptake, with the exception of Mn. In addition to the sediment, which is the main compartment for heavy metal retention in the CW system, the macrophytes have the advantage of being harvested. Therefore, E. crassipes and T. domingensis, which are good metal accumulators, can be recommended for the removal of heavy metals from agricultural wastewaters.
显示更多 [+] 显示较少 [-]Exploitation of Nano-Bentonite, Nano-Halloysite and Organically Modified Nano-Montmorillonite as an Adsorbent and Coagulation Aid for the Removal of Multi-Pesticides from Water: A Sorption Modelling Approach 全文
2015
Shabeer, T. P Ahammed | Saha, Ajoy | Gajbhiye, V. T. | Gupta, Suman | Manjaiah, K. M. | Varghese, Eldho
The objective of this study was to investigate the removal of multi-pesticides through a combined treatment process with coagulation–adsorption on nano-clay. Nano-clays like nano-bentonite, nano-halloysite and organically modified nano-montmorillonite were used as the adsorbent, and alum and polyaluminium chloride (PAC) were used as the coagulants. The coagulation method alone was not sufficient to purify water, whereas coagulation plus adsorption methods provided superior purification. Amongst the nano-clays used, organically modified nano-montmorillonite gave the best result in terms of pesticide removal from water. In order to evaluate the effect of coagulant addition on the removal efficiency of nano-clay, the respective adsorption isotherms were also calculated in the presence and absence of coagulants. Freundlich isotherm constants have shown that adsorption of pesticides on different nano-clay depends on the type of clay, presence and absence of coagulants as well as the properties of pesticides. The treatment combination having the maximum removal capacity was used efficiently for the removal of pesticides from natural and fortified natural water. The results indicated that alum–PAC coagulation aided by nano-clay as an adsorbent was the superior process for the simultaneous removal of multi-pesticides from water.
显示更多 [+] 显示较少 [-]Peatland Microbial Communities as Indicators of the Extreme Atmospheric Dust Deposition 全文
2015
Fiałkiewicz-Kozieł, B. | Smieja-Król, B. | Ostrovnaya, T. M. | Frontasyeva, M. | Siemińska, A. | Lamentowicz, M.
We investigated a peat profile from the Izery Mountains, located within the so-called Black Triangle, the border area of Poland, Czech Republic, and Germany. This peatland suffered from an extreme atmospheric pollution during the last 50 years, which created an exceptional natural experiment to examine the impact of pollution on peatland microbes. Testate amoebae (TA), Centropyxis aerophila and Phryganella acropodia, were distinguished as a proxy of atmospheric pollution caused by extensive brown coal combustion. We recorded a decline of mixotrophic TA and development of agglutinated taxa as a response for the extreme concentration of Al (30 g kg⁻¹) and Cu (96 mg kg⁻¹) as well as the extreme amount of fly ash particles determined by scanning electron microscopy (SEM) analysis, which were used by TA for shell construction. Titanium (5.9 %), aluminum (4.7 %), and chromium (4.2 %) significantly explained the highest percentage of the variance in TA data. Elements such as Al, Ti, Cr, Ni, and Cu were highly correlated (r > 0.7, p < 0.01) with pseudostome position/body size ratio and pseudostome position. Changes in the community structure, functional diversity, and mechanisms of shell construction were recognized as the indicators of dust pollution. We strengthen the importance of the TA as the bioindicators of the recent atmospheric pollution.
显示更多 [+] 显示较少 [-]Concentrations of 18 Elements in Muscle, Liver, Gills, and Gonads of Sichel (Pelecus cultratus), Ruffe (Gymnocephalus cernua), and European Perch (Perca fluviatilis) in the Danube River near Belgrade (Serbia) 全文
2015
Subotić, S. | Višnjić-Jeftić, Ž | Spasić, S. | Hegediš, A. | Krpo-Ćetković, J. | Lenhardt, M.
The analysis of 18 elements in muscle, liver, gills, and gonads of sichel (Pelecus cultratus), ruffe (Gymnocephalus cernua), and European perch (Perca fluviatilis), caught at a polluted segment of the Danube River near Belgrade, was carried out with the aim to expand the knowledge about the ecotoxicology of these species for monitoring purposes and the possible impact on human health. Generally, the elemental concentration significantly differed between species and tissues (p < 0.0001), and a statistical interaction between these two factors was observed (p < 0.0001). In muscle and liver, concentrations of Hg and Se were statistically higher in ruffe than in sichel and European perch. In gills, statistically highest concentrations of Mn, Sr, and Zn were found in sichel, and of Fe in European perch. In gonads, statistically highest concentrations of As were detected in sichel, of Zn in ruffe, and of Mn and Mo in European perch. The highest number of coefficients of partial correlations between fish weight and element levels was found in sichel (11 in total). Of all analyzed elements, Al and B had the highest number of partial correlations in tissues. The levels of Hg exceeded the maximum acceptable concentration (0.5 mg kg⁻¹) in all muscle samples, which can pose a risk for human consumption. Different diet preferences of the investigated fish species resulted in a different accumulation of elements in tissues, and ruffe (as a species that consume mainly benthic macroinvertebrates) accumulated the highest level of Hg, which makes it suitable for monitoring of this element in water bodies.
显示更多 [+] 显示较少 [-]Efficient Adsorptive Removal of Humic Acid from Water Using Zeolitic Imidazole Framework-8 (ZIF-8) 全文
2015
Lin, Kun-Yi Andrew | Chang, Hsuan-Ang
To develop an efficient adsorbent for humic acid, the present study represents the first attempt to investigate the capability of zeolitic imidazole frameworks to remove humic acid from water. Zeolitic imidazole framework-8 (ZIF-8) is particularly selected as a prototype ZIF to adsorb humic acid owing to its high stability in aqueous solutions. ZIF-8 was synthesized and characterized using scanning electronic microscopy (SEM), powder X-ray diffraction pattern (PXRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analyzer (TGA) and then used to adsorb humic acid under various conditions. The structure of ZIF-8 was found to remain intact after the exposure to humic acid in water. Factors affecting the adsorption were examined, including solid-to-liquid ratio, mixing time, temperature, pH, presence of salt, and surfactants. The adsorption capacity of ZIF-8 was found to be much higher than that of activated carbon, fly ash, zeolites, graphite, etc., showing its promising potential for removal of humic acid. The adsorption mechanism could be attributed to the electrostatic interaction between the positive surface of ZIF-8 and the acidic sites of humic acid, as well as the π–π stacking interaction between imidazole of ZIF-8 and benzene rings of humic acid. The humic acid adsorption to ZIF-8 could be enhanced in the acidic conditions, and the adsorption process remained highly stable in the solutions of a wide range of NaCl concentrations. ZIF-8 can be also regenerated by simple ethanol-washing process and reused for humic acid adsorption. These features enable ZIF-8 to be an efficient and stable adsorbent to remove humic acid from water.
显示更多 [+] 显示较少 [-]Interactions of Cd and Pb with Humate–Palygorskite and Humate–Sepiolite Complexes 全文
2015
Shirvani, M. | Moradian, E. | Khalili, B. | Bakhtiary, S.
Various geochemical studies have yielded conflicting data on whether humic coatings decrease or increase adsorption of heavy metals by soil minerals. The objective of the present study is to determine how humate pre-adsorption affects subsequent retention of Cd and Pb by palygorskite and sepiolite, as special silicate clay minerals of soil in many arid regions. For this purpose, a series of equilibrium batch experiments were conducted on the interactions of Pb and Cd with Ca–palygorskite and Ca–sepiolite before and after humate adsorption. The results showed that the Langmuir (L), Freundlich (F), Langmuir–Freundlich (LF), and Toth (T) equations satisfactorily described metal sorption data on the minerals. In the presence of humate as the pre-adsorbate, the values for sorption capacities of palygorskite and sepiolite for Cd and Pb slightly decreased. This can be attributed to the competition between humates and metal ions for mineral active sites and steric hindrance of the adsorbed humates, which reduces the access of metal ions to the mineral surface and internal channels. Humate coatings decreased the adsorption equilibrium constants of Cd, suggesting that the affinity of the organo-clays for Cd sorption is lower than those of Ca–clays. The values for the heterogeneity factor (β) generally showed an increasing trend with increasing humate coverage on palygorskite and sepiolite, which can be explained by the increased diversity of adsorption centers on humate–clay complexes. It may be concluded that the presence of humate bound on fibrous clay surfaces can influence the sorption, and hence the bioavailability and mobility of heavy metals in fibrous clay-containing arid and semiarid soils.
显示更多 [+] 显示较少 [-]