细化搜索
结果 1411-1420 的 4,940
Metabolomics analysis of a mouse model for chronic exposure to ambient PM2.5
2019
Xu, Yanyi | Wang, Wanjun | Zhou, Ji | Chen, Minjie | Huang, Xingke | Zhu, Yaning | Xie, Xiaoyun | Li, Weihua | Zhang, Yuhao | Kan, Haidong | Ying, Zhekang
Chronic ambient fine particulate matter (PM₂.₅) exposure correlates with various adverse health outcomes. Its impact on the circulating metabolome−a comprehensive functional readout of the interaction between an organism's genome and environment−has not however been fully understood. This study thus performed metabolomics analyses using a chronic PM₂.₅ exposure mouse model. C57Bl/6J mice (female) were subjected to inhalational concentrated ambient PM₂.₅ (CAP) or filtered air (FA) exposure for 10 months. Their sera were then analyzed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). These analyses identified 2570 metabolites in total, and 148 of them were significantly different between FA- and CAP-exposed mice. The orthogonal partial least-squares discriminant analysis (OPLS-DA) and heatmap analyses displayed evident clustering of FA- and CAP-exposed samples. Pathway analyses identified 6 perturbed metabolic pathways related to amino acid metabolism. In contrast, biological characterization revealed that 71 differential metabolites were related to lipid metabolism. Furthermore, our results showed that CAP exposure increased stress hormone metabolites, 18-oxocortisol and 5a-tetrahydrocortisol, and altered the levels of circadian rhythm biomarkers including melatonin, retinal and 5-methoxytryptophol.
显示更多 [+] 显示较少 [-]Toxicity comparison of three imidazolium bromide ionic liquids to soil microorganisms
2019
Cheng, Chao | Ma, Junchao | Wang, Jinhua | Du, Zhongkun | Li, Bing | Wang, Jun | Gao, Chong | Zhu, Lusheng
Ionic liquids (ILs) are extensively used in several chemistry fields. And research about the effects of ILs on soil microbes is needed. In this study, brown soil was exposed to 1-butyl-3-methylimidazolium bromide ([C₄mim]Br), 1-hexyl-3-methylimidazolium bromide ([C₆mim]Br) and 1-decyl-3-methylimidazolium bromide ([C₁₀mim]Br). The toxicities of the three ILs are evaluated by measuring the soil culturable microbial number, enzyme activity, microbial diversity and, abundance of the ammonia monooxygenase (amoA) genes of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Results showed that all tested ILs caused a decrease in culturable microbial abundance. Tested ILs exposure inhibit urease activity and promote acid phosphatase and β-glucosidase activities. Tested ILs reduced soil microbial diversity and the abundances of AOB-amoA and AOA-amoA genes significantly. After a comparison of the integrated biomarker response (IBR) index, the toxicities of tested ILs to soil microorganisms were as follows: [C₁₀mim]Br > [C₆mim]Br > [C₄mim]Br. Among all collected biomarkers, the abundance of the AOA-amoA gene was the most sensitive one and was easily affected after ILs exposure.
显示更多 [+] 显示较少 [-]Adsorption mechanisms of chromate and phosphate on hydrotalcite: A combination of macroscopic and spectroscopic studies
2019
Hsu, Liang-Ching | Tzou, Yu-Min | Chiang, Po-Neng | Fu, Wei-Min | Wang, Ming-Kuang | Teah, Heng Yi | Liu, Yu-Ting
Hydrotalcite (HT) is a layered double hydroxide (LDH), which is considered as a potential adsorbent to remove anion contaminants. In this study, adsorption of chromate (CrO₄) and phosphate (PO₄) on HT was conducted at various pH and temperatures. Related adsorption mechanisms were determined via the isotherm, kinetic, and competitive adsorption studies as well as the Cr K-edge X-ray absorption fine-structure (XAFS) spectroscopy. The maximum adsorption capacities for CrO₄ and PO₄ on HT were 0.16 and 0.23 mmol g⁻¹. Regarding adsorption kinetics, CrO₄ and PO₄ adsorption on HT could be well described by the second order model, and the rate coefficient of CrO₄ and PO₄ on HT decreased significantly with the increasing pH from 5 to 9. The adsorption kinetics for CrO₄ and PO₄ were divided into fast and slow stages with the boundary at 15 min. This biphasic adsorption behavior might be partially attributed to multiple reactive pathways including anion exchange and surface complexation. Fitting results of Cr K-edge EXAFS analysis showed a direct bonding between CrO₄ and Al on HT surfaces. Such a surface complexation appeared to be the rate-limiting step for CrO₄ adsorption on HT. By contrast, the diffusion through the hydrated interlayer space of HT was the major rate-limiting step for PO₄. This study determined the adsorption behaviors of CrO₄ and PO₄ on HT, including the initial transfer process and the subsequent adsorption mechanisms. Such information could improve the strategy to use HT as the potential adsorbent for the remediation of anionic pollutants.
显示更多 [+] 显示较少 [-]Short-term joint effects of ambient air pollutants on emergency department visits for respiratory and circulatory diseases in Colombia, 2011–2014
2019
Rodríguez-Villamizar, Laura Andrea | Rojas-Roa, Néstor Yezid | Fernández-Niño, Julián Alfredo
We evaluated the short-term effect of mixtures of ambient air pollutants on respiratory and circulatory morbidity in four Colombian cities.Daily Emergency Department (ED) visit records for respiratory and circulatory selected diagnosis and daily concentrations for six criteria air pollutant were obtained in four of the five major cities in Colombia: Bucaramanga, Bogota, Cali, and Medellin during 2011–2014. Using conditional Poisson time series analysis with fixed effects, we assessed the effect of air pollutants on health outcomes using single-pollutant, two-pollutant and specific mixtures-of-pollutant models controlling for meteorology and time trends. The percentages of change in the rate of ED visits and their 95% confidence interval were estimated for the joint effect of pollutants.In single-pollutant models increases in gases concentrations were associated with increases in ED visits for respiratory and circulatory diseases. The two-pollutant models for respiratory diseases showed that the effect of NO₂ alone (% change 2.86 95% CI 1.87–3.85) is higher than the joint effect of any of its combinations except for its combination with SO₂ (% change 3.05 95%CI 1.04–5.05). The two-pollutant models for circulatory diseases showed synergistic effects between NO₂ and PM₂.₅ (% change 2.13 95%CI 0.001–4.26). Specific mixtures models showed that the mixture of “traffic-related pollutants” has the higher joint effect on circulatory morbidity and respiratory morbidity.The results show the dominant effect of NO₂ in air pollution mixtures on respiratory and circulatory morbidity, and the synergistic effect of NO₂ and SO₂ in air pollution mixtures on respiratory morbidity.
显示更多 [+] 显示较少 [-]Particulate matter pollution in Chinese cities: Areal-temporal variations and their relationships with meteorological conditions (2015–2017)
2019
Li, Xiaoyang | Song, Hongquan | Zhai, Shiyan | Lu, Siqi | Kong, Yunfeng | Xia, Haoming | Zhao, Haipeng
As the second largest economy in the world, China experiences severe particulate matter (PM) pollution in many of its cities. Meteorological factors are critical in determining both areal and temporal variations in PM pollution levels; understanding these factors and their interactions is critical for accurate forecasting, comprehensive analysis, and effective reduction of this pollution. This study analyzed areal and temporal variations in concentrations of PM₂.₅, PM₁₀, and PMcₒₐᵣₛₑ (PM₁₀ - PM₂.₅) and PM₂.₅ to PM₁₀ ratios (PM₂.₅/PM₁₀) and their relationships with meteorological conditions in 366 Chinese cities from January 1, 2015 to December 31, 2017. On the national scale, PM₂.₅ and PM₁₀ decreased from 48 to 42 μg m⁻³ and from 88 to 84 μg m⁻³, respectively, and the annual mean concentrations were 45 μg m⁻³ (PM₂.₅) and 84 μg m⁻³ (PM₁₀) during the time period (2015–2017). In most regions, largest PM concentrations occurred in winter. However, in northern China, in spring PMcₒₐᵣₛₑ concentrations were highest due to dust. The PM₂.₅/PM₁₀ ratio was higher in southern than in northern China. There were large regional disparities in PM diurnal variations. Generally, PM concentrations were negatively correlated with precipitation, relative humidity, air temperature, and wind speed, but were positively correlated with surface pressure. The sunshine duration showed negative and positive impacts on PM in northern and southern cities, respectively. Meteorological factors impacted particulates of different size differently in different regions and over different periods of time.
显示更多 [+] 显示较少 [-]Spatial variability, mixing states and composition of various haze particles in atmosphere during winter and summertime in northwest China
2019
Dong, Zhiwen | Qin, Dahe | Li, Kaiming | Kang, Shichang | Wei, Ting | Lu, Junfeng
Pollutants, which are usually transported from urban cities to remote glacier basins, and aerosol impurities affect the earth's temperature and climate by altering the radiative properties of the atmosphere. This work focused on the physicochemical properties of atmospheric pollutants across the urban and remote background sites in northwest China. Information on individual particles was obtained using transmission electron microscopy (TEM) and energy dispersive X-ray spectrometry (EDX). Particle size and age-dependent mixing structures of individual particles in clean and polluted air were investigated. Aerosols were classified into eight components: mineral dust, black carbon (soot)/fly ash, sulfates, nitrates, NaCl salt, ammonium, organic matter, and metals. Marked spatial and seasonal changes in individual particle components were observed in the study area. Aerosol particles were generally found to be in the mixing state. For example, salt-coated particles in summer accounted for 31.2–44.8% of the total particles in urban sites and 37.5–74.5% of the total particles in background sites, while in winter, almost all urban sites comprised >50%, which implies a significant effect on the radiative forcing in the study area. We found that in PM₂.₅ section, the internally mixed black carbon/organic matter particles clearly increased with diameter. Moreover, urban cities were characterized by atmospheric particles sourced from anthropogenic activities, whereas background locations exhibited much lower aerosol concentrations and increased particle density, originating from natural crustal sources (e.g., mineral dust and NaCl salt), which, together with air mass trajectory analysis, indicates a potential spatial transport process and routes of atmospheric transport from urban cities to background locations. Thus, this work is of importance in evaluating atmospheric conditions in northwest China and northeast Tibetan Plateau regions, to discover the transport processes and facilitate improvements in climatic patterns concerning atmospheric impurities.
显示更多 [+] 显示较少 [-]Individual variability in contaminants and physiological status in a resident Arctic seabird species
2019
Eckbo, Norith | Le Bohec, Céline | Planas-Bielsa, Victor | Warner, Nicholas A. | Schull, Quentin | Herzke, Dorte | Zahn, Sandrine | Haarr, Ane | Gabrielsen, Geir W. | Borgå, Katrine
While migratory seabirds dominate ecotoxicological studies within the Arctic, there is limited knowledge about exposure and potential effects from circulating legacy and emerging contaminants in species who reside in the high-Arctic all year round. Here, we focus on the case of the Mandt's Black guillemot (Cepphus grylle mandtii) breeding at Kongsfjorden, Svalbard (79.00°N, 11.66°E) and investigate exposure to legacy and emerging contaminants in relation to individual physiological status, i.e. body condition, oxidative stress and relative telomere length. Despite its benthic-inshore foraging strategy, the Black guillemot displayed overall similar contaminant concentrations in blood during incubation (∑PCB11 (15.7 ng/g w.w.) > ∑PFAS5 (9.9 ng/g w.w.) > ∑Pesticides9 (6.7 ng/g w.w.) > ∑PBDE4 (2.7 ng/g w.w.), and Hg (0.3 μg/g d.w.) compared to an Arctic migratory seabird in which several contaminant-related stress responses have been observed. Black guillemots in poorer condition tended to display higher levels of contaminants, higher levels of reactive oxygen metabolites, lower plasmatic antioxidant capacity, and shorter telomere lengths; however the low sample size restrict any strong conclusions. Nevertheless, our data suggests that nonlinear relationships with a threshold may exist between accumulated contaminant concentrations and physiological status of the birds. These findings were used to build a hypothesis to be applied in future modelling for describing how chronic exposure to contaminants may be linked to telomere dynamics.
显示更多 [+] 显示较少 [-][SnS4]4- clusters modified MgAl-LDH composites for mercury ions removal from acid wastewater
2019
Chen, Lihong | Xu, Haomiao | Xie, Jiangkun | Liu, Xiaoshuang | Yuan, Yong | Liu, Ping | Qu, Zan | Yan, Naiqiang
The high acidity of mercury ions (Hg²⁺) contained wastewater can complicate its safe disposal. MgAl-LDHs supported [SnS₄]⁴⁻ clusters were synthesized for Hg²⁺ removal from acid wastewater. The active sites of [SnS₄]⁴⁻ clusters were inserted into the interlayers of MgAl-LDHs using an ion-exchange method. The experimental results indicated that [SnS₄]⁴⁻/MgAl-LDHs composite can obtain higher than 99% Hg²⁺ removal efficiency under low pH values. The maximum mercury adsorption capacity is 360.6 mg g⁻¹. It indicated that [SnS₄]⁴⁻ clusters were the primary active sites for mercury uptake, existing as stable Hg₂(SnS₄) on the surface of the composite. Under low pH values, such a composite seems like a “net” for HgSO₄ molecules, exhibiting great potential for mercury removal from acid solutions. Moreover, the co-exist metal ions such as Zn²⁺, Na⁺, Cd²⁺, Cr³⁺, Pb²⁺, Co²⁺, and Ni²⁺ have no significant influences on Hg²⁺ removal. The adsorption isotherms and kinetics were also studied, indicating that the adsorption mechanism follows a monolayer chemical adsorption model. The [SnS₄]⁴⁻/MgAl-LDHs composite exhibits a great potential for Hg²⁺ removal from acid wastewater.
显示更多 [+] 显示较少 [-]Occurrences, levels and risk assessment studies of emerging pollutants (pharmaceuticals, perfluoroalkyl and endocrine disrupting compounds) in fish samples from Kalk Bay harbour, South Africa
2019
Ojemaye, Cecilia Y. | Petrik, Leslie
A comprehensive analysis of 15 target chemical compounds (pharmaceuticals and personal care product, perfluoroalkyl compounds and industrial chemicals) were carried out to determine their concentrations in selected commercially exploited, wild caught small and medium sized pelagic fish species and their organs (Thyrsites atun (snoek), Sarda orientalis (bonito), Pachymetopon blochii (panga) and Pterogymnus laniarius (hottentot)) obtained from Kalk Bay harbour, Cape Town. Solid phase extraction (SPE) method based on Oasis HLB cartridges were used to concentrate and clean-up the samples. Liquid chromatography–mass spectrometry analysis of these chemical compounds revealed the simultaneous presence of at least 12 compounds in different parts of the selected fish species in nanogram-per-gram dry weight (ng/g dw) concentrations. The results revealed that perfluorodecanoic acid, perfluorononanoic acid and perfluoroheptanoic acid were the most predominant among the perfluorinated compounds and ranged between: (20.13–179.2 ng/g), (21.22–114.0 ng/g) and (40.06–138.3 ng/g). Also, diclofenac had the highest concentration in these edible fish species out of all the pharmaceuticals detected (range: 551.8–1812 ng/g). The risk assessment values were above 0.5 and 1.0 for acute and chronic risk respectively which shows that these chemicals have a high health risk to the pelagic fish, aquatic organisms and to humans who consume them. Therefore, there is an urgent need for a precautionary approach and the adequate regulation of the use and disposal of synthetic chemicals that persist in aquatic/marine environment in this province and other parts of South Africa, to prevent impacts on the sustainability of our marine environment, livelihood and lives.
显示更多 [+] 显示较少 [-]Rapid and efficient recovery of silver with nanoscale zerovalent iron supported on high performance activated carbon derived from straw biomass
2019
Wang, Jingjing | Zhang, Wenhui | Kang, Xinyu | Zhang, Changsen
High performance activated carbon (HPAC) supported nanoscale zerovalent iron (nZVI) was prepared and used for recovery of silver. This composite material was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The removal amount of Ag+ increased with pH values and temperature. The removal process achieved equilibrium within 40 min and the maximum removal capacity was 986.5 mg/g at 298 K. The composite material showed fast adsorption rate and high adsorption capacity because the presence of high surface area activated carbon could effectively inhibit aggregation of nanoscale zerovalent iron, thus enhancing its reactivity. The Ag+ removal followed pseudo-second-order kinetic model and Langmuir isotherm model. XPS and XRD characterizations were performed to elucidate removal mechanism. It could be concluded that both coordination adsorption and reductive precipitation contributed to removal of Ag+ on the nZVI/HPAC.
显示更多 [+] 显示较少 [-]