细化搜索
结果 1421-1430 的 6,473
In vitro evaluation of the cytotoxicity, mutagenicity and DNA damage induced by particle matter and gaseous emissions from a medium-duty diesel vehicle under real driving conditions using palm oil biodiesel blends
2020
Botero, Maria L. | Mendoza, Carolina | Arias, Silvana | Hincapié, Oscar D. | Agudelo, John R. | Ortiz, Isabel C.
The influence of palm oil biodiesel content on the cytotoxicity, mutagenicity and genotoxicity of particle- and gas-phase diesel vehicle emissions was investigated. The emissions were collected on-board of a EURO IV diesel truck, fuelled with mixtures of 10% (B10), 20% (B20) and 100% (B100) of palm oil biodiesel, under real driving conditions. Organic extracts of the particulate matter (PM) and gases were characterised for 17 PAH (including EPA priority) and used for the biological assay. Increasing biodiesel content in the fuel mixture results in a decrease in the PM and PAH emission factors, both in the particulate and gas-phase. The majority of the PAH are present in the gas-phase. The mutagenic potencies, in TA98 bacteria, are higher for B20 in both phases, whereas the mutagenicity emission factor, that takes into account the lower emission of PM and PAH, is not significantly different between the fuels. Higher direct mutagenicity (TA98 + S9) is observed in all the tested fuels, indicating the action of carcinogenic compounds other than non-substituted PAH. The gas-phase extracts present higher cytotoxicity and genotoxicity in lung epithelial cell A549, which may be related to the higher PAH content in the gas-phase. The increase in biodiesel content have a different impact on cytotoxicity, being larger in the gas-phase and lower in the particle-phase. This indicates that pulmonary toxicity may be higher for the gaseous emissions, due to the role of different toxic compounds compared to the PM. The adverse biological effects when biodiesel content increases are not consequent with the reduction of the PAH characterised, indicating that other toxic compounds are more relevant. Further investigations to identify these compounds are required in order to update and focus the efforts regarding emission targets and controls.
显示更多 [+] 显示较少 [-]Immobilization of Hg(II) on high-salinity Spirulina residue-induced biochar from aqueous solutions: Sorption and transformation mechanisms by the dual-mode isotherms
2020
Ge, Yiming | Zhu, Shishu | Chang, Jo-Shu | Jin, Chao | Ho, Shih-Hsin
Removal of Hg(II) by biochar (BC) is a promising remediation technology. The high-salinity Spirulina residue (HSR) is a hazardous waste generated during extracting the pigment phycocyanin under high salinity conditions. Although HSR-derived BC (HSRBC) exhibited the excellent sorption capacity of Hg(II), the involved mechanisms have been rarely studied. In this study, we investigated the specific properties and Hg(II) sorption mechanisms of HSRBCs. Chloride and calcium minerals were formed in HSRBCs. Increments in carbonization temperature (from 350 to 700 °C) or time (from 90 to 540 min) led to the enhancement of aromaticity, porosity, and positive charge, but cracked oxygen-containing groups and C–N bonds. Further increase in carbonization temperature or time decreased the sorption of Hg(II). At environmentally relevant concentration of Hg(II) (2–4 mg/L), the sorption capacity (6.1–12.7 mg/g) obtained in HSRBC350 was comparable to activated carbon. Based on dual-mode isotherm, surface sorption accounted for 75–88% uptake, while precipitation accounted for 12–25% uptake. In addition, the C–O, CO, and CC groups were responsible for the monodentate/bidentate complexation and reduction, while Cl⁻ triggered Hg₂Cl₂ precipitation. Overall, this study provided a new insight in creating an excellent Hg(II) sorbent from hazardous waste, and revealed the sorption mechanisms for Hg(II) uptake.
显示更多 [+] 显示较少 [-]Toxicological appraisal of the chemical fractions of ambient fine (PM2.5-0.3) and quasi-ultrafine (PM0.3) particles in human bronchial epithelial BEAS-2B cells
2020
Badran, Ghidaa | Verdin, Anthony | Grare, Céline | Abbas, Imane | Achour, Djamal | Ledoux, Frédéric | Roumie, Mohamad | Cazier, Fabrice | Courcot, Dominique | Lo Guidice, Jean-Marc | Garçon, Guillaume
New toxicological research is still urgently needed to improve the current knowledge about the induction of some underlying mechanisms of toxicity by the different chemical fractions of ambient particulate matter (PM). This in vitro study sought also to better evaluate and compare the respective toxicities of fine particles (PM₂.₅₋₀.₃) and their inorganic and organic chemical fractions, and the respective toxicities of the organic chemical fractions of PM₂.₅₋₀.₃ and quasi-ultrafine particles (PM₀.₃). Human bronchial epithelial BEAS-2B cells were also exposed for 6–48 h to relatively low doses of PM₂.₅₋₀.₃ and their organic extractable (OEM₂.₅₋₀.₃) and non-extractable (NEM₂.₅₋₀.₃) fractions, and the organic extractable fraction (OEM₀.₃) of PM₀.₃. We reported that not only PM₂.₅₋₀.₃, but also, to a lesser extent, its inorganic chemical fraction, NEM₂.₅₋₀.₃, and organic chemical fraction, OEM₂.₅₋₀.₃, were able to significantly induce ROS overproduction and oxidative damage notwithstanding the early activation of NRF2 signaling pathway. Moreover, for any exposure, inflammatory and apoptotic events were noticed. Similar results were observed in BEAS-2B cells exposed to OEM₀.₃, rich of polycyclic aromatic hydrocarbons and their nitrated and oxygenated derivatives. In BEAS-2B cells exposed for 24 and 48 h to OEM₂.₅₋₀.₃ and OEM₀.₃, to a higher extent, there was an alteration of the levels of some critical proteins even though crucial for the autophagy rather than a real reduction of autophagy. It is noteworthy that the toxicological effects were equal or mostly higher in BEAS-2B cells exposed for 6 and/or 24 h to PM₂.₅₋₀.₃ from those exposed to NEM₂.₅₋₀.₃ or OEM₂.₅₋₀.₃, and in BEAS-2B cells exposed for 6 and/or mostly 24 h to OEM₀.₃ from those exposed to OEM₂.₅₋₀.₃. Taken together, these results revealed the higher potentials for toxicity, closely linked to their respective physical and chemical characteristics, of PM₂.₅₋₀.₃ vs NEM₂.₅₋₀.₃ and/or OEM₂.₅₋₀.₃, and OEM₀.₃ vs OEM₂.₅₋₀.₃.
显示更多 [+] 显示较少 [-]Thifluzamide induces the toxic effects on zebrafish (Danio rerio) via inhibition of succinate dehydrogenase (SDH)
2020
Yang, Yang | Dong, Fengshou | Liu, Xingang | Xu, Jun | Wu, Xiaohu | Zheng, Yongquan
Thifluzamide is widely used in treatment of rice diseases and has potential toxicity on aquatic organism. Although previous studies have focused on the toxic effect of thifluzamide in zebrafish, no consistent conclusions have been reached. To help to elucidate the toxic mechanism, qualities of liver and mitochondria were evaluated. The global changes in the transcriptome of zebrafish after exposure to thifluzamide were measured. Based on this, the expression and activities of chitinase and succinate dehydrogenase (SDH) were further assayed. And the targeted site of thifluzamide in zebrafish was confirmed by dock study and co-exposure study. Here we report that developmental inhibition was observed along with presence of liver and mitochondrial damage. The expression of SDHa-d and genes related to mitochondrial DNA (mtDNA) replicate and mitochondrial complexes were significantly altered. And, as the top differentially expressed genes, the expression of chia.1-6 did show apparent changes, but differences of chitinase activity between exposure groups and the controls did not reach significance. In line with that, dock study showed that the binding potentials of thifluzamide toward zebrafish chitinase and SDH exhibited in the following order: SDH> chitinase. And sdhb-sdhc-sdhd (Qp site) showed the highest binding activity toward thifluzamide. The joint exposure (thifluzamide + Q10) significantly improved the survival of zebrafish compared with single thifluzamide exposure. These results indicate that SDH, especially Qp-site, may be the target of thifluzamide in zebrafish and inhibition of SDH activity may be at least in partial responsible for the toxicity of thifluzamide in zebrafish. In addition, the antagonistic effect of Q10 on thifluzamide toxicity in zebrafish suggests that Q10 may be a useful adjunct to detoxification.
显示更多 [+] 显示较少 [-]Climate change impacts the subsurface transport of atrazine and estrone originating from agricultural production activities
2020
Barrios, Renys E. | Akbariyeh, Simin | Liu, Chuyang | Gani, Khalid Muzamil | Kovalchuk, Margarita T. | Li, Xu | Li, Yusong | Snow, Dan | Tang, Zhenghong | Gates, John | Bartelt-Hunt, Shannon L.
Climate change will impact soil properties such as soil moisture, organic carbon and temperature and changes in these properties will influence the sorption, biodegradation and leaching of trace organic contaminants to groundwater. In this study, we conducted a modeling case study to evaluate atrazine and estrone transport in the subsurface under current and future climate conditions at a field site in central Nebraska. According to the modeling results, in the future, enhanced evapotranspiration and increased average air temperature may cause drier soil conditions, which consequently reduces the biodegradation of atrazine and estrone in the water phase. On the other hand, greater transpiration rates lead to greater root solute uptake which may decrease the concentration of atrazine and estrone in the soil profile. Another consequence of future climate is that the infiltration and leaching rates for both atrazine and estrone may be lower under future climate scenarios. Reduced infiltration of trace organic compounds may indicate that lower trace organic concentrations in groundwater may occur under future climate scenarios.
显示更多 [+] 显示较少 [-]Bisphenol A and its substitutes regulate human B cell survival via Nrf2 expression
2020
Jang, Ju-Won | Yi, Chae-uk | Yoon, Yeo Dae | Kang, Jong-Soon | Moon, Eun-Yi
B cells contribute to produce inflammatory cytokines and antibodies, to present autoantigens, and to interact with T cells, which lead to body defense and disease control. Nuclear factor (erythroid-derived 2)-like 2(Nrf2) is responsible for gene expression of antioxidant enzymes to protect cells from oxidative stress by reactive oxygen species(ROS) production. Bisphenol A(BPA) may not be safe due to the effect on body’s physiological functions. The chemicals that substitute for BPA may still have similar effects in the body. Tritan™ copolyester is a novel plastic form using BPA substitutes, 1,4-cyclohexanedimethanol(CHDM), dimethyl terephthalate(DMT), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol(TMCD). Isosorbide(ISO) was also used as a substitute for TMCD and DMT. Here, we investigated whether B cell viability is influenced by BPA and its substitutes via Nrf2 induction using WiL2-NS human B lymphoblast cells. When cytotoxicity was measured by using assays with MTT, CellTiter-Glo, trypan blue and propidium iodide, cytotoxicity by BPA was higher than that by substitutes. BPA and its substitutes showed significant cytotoxicity and ROS production, which were attenuated by the treatment with N-acetylcysteine(NAC), a ROS scavenger. In addition, BPA treatment enhanced gene expression of antioxidant enzymes, heme oxygenase(HO)-1, catalase, superoxide dismutase(SOD) 1 and 2. As H₂O₂ treatment induced cell death and Nrf2 amount in WiL2-NS cells, BPA treatment increased Nrf2. Cell death by H₂O₂ was increased in doxycycline-inducible Nrf2-knockdown(KD) cells. In Cytotoxicity by the treatment with BPA or its substitutes was also enhanced in Nrf2-KD cells but that was reduced by Nrf2 overexpression compared to control cells. Taken together, these results implicate that B cell cytotoxicity by substitutes should be lower than BPA and Nrf2 can prevent B cells from BPA- or BPA substitutes-induced cytotoxicity via ROS production. Data suggest that the comprehensive studies or evaluation could be necessary to replace BPA in manufacture by other substitutes.
显示更多 [+] 显示较少 [-]Remediation of pyrene contaminated soil by double dielectric barrier discharge plasma technology: Performance optimization and evaluation
2020
Abbas, Yawar | Lu, Wenjing | Wang, Qian | Dai, Huixing | Liu, Yanting | Fu, Xindi | Pan, Chao | Ghaedi, Hosein | Zheng, Feng | Wang, Hongtao
Polycyclic aromatic hydrocarbons (PAHs) in soil are not only detrimental to environment but also to human health. Double dielectric barrier discharge (DDBD) plasma reactor used for the remediation of pyrene contaminated soil was studied. The performance of DDBD reactor was optimized with influential parameters including applied voltage, type of carrier gas, air feeding rate as well as pyrene initial concentration. The analysis of variance (ANOVA) results showed that input energy had a great effect on pyrene remediation efficiency followed by pyrene initial concentration, while, the effect of air feeding rate was insignificant. More specifically, the remediation efficiency of pyrene under air, nitrogen and argon as carrier gas were approximately 79.7, 40.7 and 38.2% respectively. Pyrene remediation efficiency is favored at high level of applied voltages and low level of pyrene initial concentration (10 mgkg⁻¹) and air feeding rate (0.85 L/min). Moreover, computation of the energy efficiency of the DDBD system disclosed that an optimal applied voltage (35.8 kV) and higher initial pyrene concentration (200 mgkg⁻¹) favored the high energy efficiency. A regression model predicting pyrene remediation under DDBD plasma condition was developed using the data from a face-centered central composite design (FCCD) experiment. Finally, the residual toxicity analysis depicted that the respiratory activity increased more than 21 times (from 0.04 to 0.849 mg O₂ g⁻¹) with a pyrene remediation efficiency of 81.1%. The study demonstrated the DDBD plasma technology is a promising method not only for high efficiency of pyrene remediation, but also recovering biological function without changing the physical-chemical properties of soil.
显示更多 [+] 显示较少 [-]Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil
2020
Zhang, Houpu | Chen, Shiyu | Zhang, Qianke | Long, Zhengnan | Yu, Yunlong | Fang, Hua
Long-term substantial application of fungicides in greenhouse cultivation led to residual pollution in soils and then altered soil microbial community. However, it is unclear whether residual fungicides could affect the diversity and abundance of antibiotic resistance genes (ARGs) in greenhouse soils. Here, the dissipation of fungicides and its impact on the abundance of ARGs were determined using shotgun metagenomic sequencing in the greenhouse and mountain soils under laboratory conditions. Our results showed the greenhouse soils harbored more diverse and abundant ARGs than the mountain soils. The application of carbendazim, azoxystrobin, and chlorothalonil could increase the abundance of total ARGs in the greenhouse soils, especially for those dominant ARG subtypes including sul2, sul1, aadA, tet(L), tetA(G), and tetX2. The abundant ARGs were significantly correlated with mobile genetic elements (MGEs, e.g. intI1and R485) in the greenhouse soils but no significant relationship in the mountain soils. Meanwhile, the co-occurrence patterns of ARGs and MGEs, e.g., sul2 and R485, sul1 and transposase, were further verified via the genetic arrangement of genes on the metagenome-assembled contigs in the greenhouse soils. Additionally, host tracking analysis indicated that ARGs were mainly carried by enterobacteria in the greenhouse soils but actinomyces in the mountain soils. These findings confirmed that some fungicides might serve as the co-selectors of ARGs and elevated their abundance via MGEs-mediated horizontal gene transfer in the greenhouse soils.
显示更多 [+] 显示较少 [-]Benefit-risk associated with the consumption of fish bycatch from tropical tuna fisheries
2020
Sardenne, Fany | Lamboy, Nathalie Bodin | Médieu, Anaïs | Antha, Marisa | Arrisol, Rona | Le Grand, Fabienne | Bideau, Antoine | Munaron, Jean-Marie | Le Loc’h, François | Chassot, Emmanuel
Mercury, omega-3 (docosahexaenoic acid, DHA and eicosapentaenoic acid, EPA) and macronutrients (fat and proteins) were quantified on a wet weight (ww) basis in 20 species of fish taken as bycatch in tropical tuna fisheries. Based on a hazard quotient taking into account mercury and omega-3 contents, a benefit-risk assessment for the consumption of these pelagic species was conducted for three people categories: young children, children and adults. All fish bycatch were found to be an excellent source of proteins (min‒max = 14.4–25.2 g/100 g fillet), had low omega-6/omega-3 ratios (<1, except for silky shark), and had mercury content below the safety limits defined by sanitary agencies. Silky shark and Istiophoridae had the highest mercury contents (min‒max = 0.029–0.317 ppm ww). Omega-3 contents were the lowest in silky shark (0.2 ± 0.2 mg/100 g fillet) and the highest in striped marlin (3.6 ± 3.2 g/100 g fillet). Billfishes (Istiophoridae, including striped marlin), minor tunas (Scombridae), and Carangidae had the highest omega-3 contents (min‒max = 0.68–7.28 g/100 g fillet). The highest hazard quotient values obtained for silky shark and great barracuda reflected a lower nutritional benefit (i.e., low omega-3 source) than risk (i.e., mercury exposure), making them not advisable for consumption. Eight species had low hazard quotients, and among them cottonmouth jack and flat needlefish were found of high health interest (high protein, moderate fat contents, and low omega-6/omega-3 ratio). A daily serving portion of 85–200 g (according to people category) can be recommended for these species. Batfish, and to a lower extent pompano dolphinfish and brassy chub, can also be consumed safely and would provide greater health benefits than risks. These results advocate for a better access of these species to local populations.
显示更多 [+] 显示较少 [-]Air pollution episodes during the COVID-19 outbreak in the Beijing–Tianjin–Hebei region of China: An insight into the transport pathways and source distribution
2020
Zhao, Na | Wang, Gang | Li, Guohao | Lang, Jianlei | Zhang, Hanyu
Although anthropogenic emissions decreased, polluted days still occurred in the Beijing–Tianjin–Hebei (BTH) region during the initial outbreak of the coronavirus disease (COVID-19). Analysis of the characteristics and source distribution of large-scale air pollution episodes during the COVID-19 outbreak (from 23 January to April 8, 2020) in the BTH region is helpful for exploring the efficacy of control measures and policy making. The results indicated that the BTH region suffered two large-scale air pollution episodes (23–28 January and 8–13 February), which were characterized by elevated PM₂.₅, SO₂, NO₂, and CO concentrations, while the O₃ concentration decreased by 1.5%–33.9% (except in Shijiazhuang, where it increased by 16.6% during the second episode). These large-scale air pollution episodes were dominated by unfavorable meteorological conditions comprising a low wind speed and increased relative humidity. The transport pathways and source distribution were explored using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT), potential source contribution function (PSCF), and concentration weighted trajectory (CWT) models. The air pollution in the BTH region was mainly affected by local emission sources during the first episode, which contributed 51.6%–60.6% of the total trajectories in the BTH region with a PM₂.₅ concentration ranging from 146.2 μg/m³ to 196.7 μg/m³. The short-distance air masses from the southern and southwestern areas of the BTH region were the main transport pathways of airflow arriving in the BTH region during the second episode. These contributed 51.9%–57.9% of the total trajectories and originated in Hebei, Henan, central Shanxi, and Shaanxi provinces, which were the areas contributing the most to the PM₂.₅ level and exhibited the highest PSCF and CWT values. Therefore, on the basis of local emission reduction, enhancing regional environmental cooperation and implementing a united prevention and control of air pollution are effective mitigation measures for the BTH region.
显示更多 [+] 显示较少 [-]