细化搜索
结果 1431-1440 的 4,935
Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution 全文
2019
Park, Samuel | Lee, Hemin | Chon, Jinhyung
Unmanned aerial vehicles can collect high-resolution and real-time photos while emitting fewer greenhouse gases than ordinary airplanes and therefore are considered economic and environmentally friendly platforms. However, quantitative analyses of the sustainability of using unmanned aerial vehicles for aerial photography based on their performance and technical constraints compared to that of airplanes are lacking. The purpose of this study is to analyze the economically and environmentally appropriate monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type (such as fixed-wing and rotary-wing types) and desired image resolution (such as 5 cm/pix and 20 cm/pix for the ground sample distance). To determine the sustainable monitoring coverage, the total photogrammetry costs must include the social cost to reduce the emitted greenhouse gases during operation, resulting in a feedback relation. As a result, the sustainable monitoring coverage of fixed-wing unmanned aerial vehicles should be less than 27.50 km² when the resolution is 5 cm/pix and 30.64 km² when the resolution is 20 cm/pix. Rotary-wing unmanned aerial vehicles are sustainable when their monitoring coverage is less than 23.98 km² at a resolution of 5 cm/pix and 26.75 km² at a resolution of 20 cm/pix. These results provide information on the number of unmanned aerial vehicles and the standing unmanned aerial vehicle deployment plans required to monitor the survey area.
显示更多 [+] 显示较少 [-]The influence of humic acids on the weathering of pyrite: Electrochemical mechanism and environmental implications 全文
2019
Zheng, Kai | Li, Heping | Xu, Liping | Li, Shengbin | Wang, Luying | Wen, Xiaoying | Liu, Qingyou
Pyrite weathering often occurs in nature and causes heavy metal ion pollution and acid mine drainage during the process. Humic acid (HA) is a critical natural organic material that can bind metal ions, thus affecting metal transfer and transformation. In this work, in situ electrochemical techniques combined with spectroscopic analysis were adopted to investigate the interfacial processes involved in pyrite weathering with/without HA. The results showed that the pyrite weathering mechanism with/without HA is FeS₂ → Fe²⁺ + 2S⁰ + 2e⁻. The presence of HA did not change the pyrite weathering mechanism, but HA adsorbs on the pyrite surface and inhibits the further transformation of sulfur. Furthermore, HA and Fe(II) ions can form complex at 45.0 °C. Increased concentration of HA, decreased HA solution acidity or decreased environmental temperature would all weaken the pyrite weathering, for the above conditions cause pyrite weathering to have a larger resistance of the double layer and a larger passive film resistance. Pyrite will release 73.7 g m⁻²·y⁻¹ Fe²⁺ to solution at pH 4.5, and the amount decreases to 36.8 g m⁻²·y⁻¹ in the presence of 100 mg/L HA. This study provides an in situ electrochemical method for the assessment of pyrite weathering.
显示更多 [+] 显示较少 [-]The response of the algae Fucus virsoides (Fucales, Ochrophyta) to Roundup® solution exposure: A metabolomics approach 全文
2019
Felline, S. | Del Coco, L. | Kaleb, S. | Guarnieri, G. | Fraschetti, S. | Terlizzi, A. | Fanizzi, F.P. | Falace, A.
Glyphosate, as a broad-spectrum herbicide, is frequently detected in water and several studies have investigated its effects on several freshwater aquatic organisms. Yet, only few investigations have been performed on marine macroalgae. Here, we studied both the metabolomics responses and the effect on primary production in the endemic brown algae Fucus virsoides exposed to different concentration (0, 0.5, 1.5 and 2.5 mg L⁻¹) of a commercial glyphosate-based herbicide, namely Roundup®. Our results show that Roundup® significantly reduced quantum yield of photosynthesis (Fᵥ/Fₘ) and caused alteration in the metabolomic profiles of exposed thalli compared to controls. Together with the decrease in the aromatic amino acids (phenylalanine and tyrosine), an increase in shikimate content was detected. The branched-amino acids differently varied according to levels of herbicide exposure, as well as observed for the content of choline, formate, glucose, malonate and fumarate. Our results suggest that marine primary producers could be largely affected by the agricultural land use, this asking for further studies addressing the ecosystem-level effects of glyphosate-based herbicides in coastal waters.
显示更多 [+] 显示较少 [-]Concomitant occurrence of anthropogenic air pollutants, mineral dust and fungal spores during long-distance transport of ragweed pollen 全文
2019
Grewling, Łukasz | Bogawski, Paweł | Kryza, Maciej | Magyar, Donat | Šikoparija, Branko | Skjøth, Carsten Ambelas | Udvardy, Orsolya | Werner, Małgorzata | Smith, Matt
Large-scale synoptic conditions are able to transport considerable amounts of airborne particles over entire continents by creating substantial air mass movement. This phenomenon is observed in Europe in relation to highly allergenic ragweed (Ambrosia L.) pollen grains that are transported from populations in Central Europe (mainly the Pannonian Plain and Balkans) to the North. The path taken by atmospheric ragweed pollen often passes through the highly industrialised mining region of Silesia in Southern Poland, considered to be one of the most polluted areas in the EU. It is hypothesized that chemical air pollutants released over Silesia could become mixed with biological material and be transported to less polluted regions further North. We analysed levels of air pollution during episodes of long-distance transport (LDT) of ragweed pollen to Poland. Results show that, concomitantly with pollen, the concentration of air pollutants with potential health-risk, i.e. SO₂, and PM₁₀, have also significantly increased (by 104% and 37%, respectively) in the receptor area (Western Poland). Chemical transport modelling (EMEP) and air mass back-trajectory analysis (HYSPLIT) showed that potential sources of PM₁₀ include Silesia, as well as mineral dust from the Ukrainian steppe and the Sahara Desert. In addition, atmospheric concentrations of other allergenic biological particles, i.e. Alternaria Nees ex Fr. spores, also increased markedly (by 115%) during LDT episodes. We suggest that the LDT episodes of ragweed pollen over Europe are not a “one-component” phenomenon, but are often related to elevated levels of chemical air pollutants and other biotic and abiotic components (fungal spores and desert dust).
显示更多 [+] 显示较少 [-]Microplastics' emissions: Microfibers’ detachment from textile garments 全文
2019
Belzagui, Francisco | Crespi, Martí | Alvarez, Antonio | Gutiérrez-Bouzán, Carmen | Vilaseca, Mercedes
Microplastics (synthetic polymers <5 mm) have been recently recognized as a big environmental concern, as their ubiquity is an undeniable fact. Their wide variety regarding shapes, sizes, and materials turn them into an intrinsically risky pollutant capable of causing several environmental impacts. Textile microfibers (MF) are a microplastic sub-group. These are mostly shed when a normal laundry of any garment takes place. Special attention has been put onto them, as high concentrations have been found in products for human consumption as shellfish and tap water. However, as there is no consensus on the methodologies to quantify and report the results of MFs detached from textile garments, the degree of similarity between published studies is very low. Hence, the aim of this research was to evaluate the microfibers’ detachment rates of finished garments and to provide a set of comparable units to report the results. These were found to range between 175 and 560 MF/g or 30000–465000 MF/m² of garment. In addition, there was a high correlation between the MF detachment and the textile article superficial density. Finally, our results were compared with a recent paper that estimated the annual mass flow of MFs to the oceans. This previous publication is 30 times higher when related to the mass but 40 times lower if related to the number of MFs.
显示更多 [+] 显示较少 [-]The hydro-fluctuation belt of the Three Gorges Reservoir: Source or sink of microplastics in the water? 全文
2019
Zhang, Kai | Chen, Xianchuan | Xiong, Xiong | Ruan, Yuefei | Zhou, Hane | Wu, Chenxi | Lam, Paul K.S.
Reservoirs can be an important environmental compartment for microplastic pollution. Previous investigations have found that surface waters and sediments in the Three Gorges Reservoir (TGR) have had high microplastic abundance, and the Xiangxi River, which is one of the largest primary tributaries of the TGR, has had much higher microplastic abundance than several marine and freshwater systems in China. A strip of land on the bank of the reservoir area, which is called the hydro-fluctuation belt (HFB), is periodically exposed due to the special hydrodynamic conditions in the TGR. The HFB may be an important source and/or sink of microplastics in TGR. In this study, microplastic occurrence in sediments from the Xiangxi River HFB was investigated to reflect the local microplastic pollution status and to evaluate its potential to serve as a source/sink of microplastics in the TGR. Seven sampling sites were selected, and sediments within the HFB and above the belt were collected in summer when the water level was low. The results showed that the microplastic abundance ranged from 0.55 ± 0.12 × 10³ to 14.58 ± 5.67 × 10³ particles m⁻², which was one to two orders of magnitude higher than that in sediments from the Xiangxi River in our previous study (80–846 particles m⁻²). Statistical analysis revealed that the microplastic abundance within the HFB was significantly higher than that of the area above the HFB. The results indicate that the HFB can be an important microplastic sink when the water level is low, and the belt can turn into a potential source when the water level is high. Cluster analysis was applied to reveal the characteristics of the microplastics collected at different sites, and the results suggest that the cluster analysis may be a useful tool in elucidating the source and fate of microplastics.
显示更多 [+] 显示较少 [-]Vital contribution of residential emissions to atmospheric fine particles (PM2.5) during the severe wintertime pollution episodes in Western China 全文
2019
Yang, Junhua | Kang, Shichang | Ji, Zhenming | Yang, Sixiao | Li, Yizhong | Tripathee, Lekhendra
To mitigate severe wintertime pollution events in Western China, identifying the source of atmospheric fine particles with an aerodynamic diameter of ≤2.5 μm (PM2.5) is a crucial step. In this study, we first analyzed the meteorological and emission factors that caused a considerable increase in the PM2.5 concentration in December 2016. This severe pollution episode was found to be related with unfavorable meteorological conditions and increased residential emissions. The WRF-Chem simulations were used to calculate the residential contribution to PM2.5 through a hybrid source apportionment method. From the validation that used grid data and in situ observations in terms of meteorological elements, PM2.5 and its compounds, the simulated results indicated that the residential sector was the largest single contributor to the PM2.5 concentration (60.2%), because of its predominant contributions to black carbon (BC, 62.1%) and primary organic aerosol (POA, 86.5%), with these two primary components accounting for 70.7% of the PM2.5 mass. Compared with the remote background (RB) region covering the central part of the Tibetan Plateau, the residential sector contributed 11.3% more to PM2.5 in the highly populated mega-city (HM) region, including the Sichuan and Guanzhong Basins, due to greater contribution to the concentrations of primary PM2.5 components. As the main emission source of sulfur dioxide (SO2), nitrogen oxides (NOx), and secondary organic aerosol (SOA), the industrial sector was the second largest contributor to the PM2.5 concentration in the HM region. However, in the RB region, the dominating emissions of NOx, SOA, and BC were from the transport sector; thus, it was the next largest contributor to total PM2.5. An evaluation of the emission control experiment suggested that mitigation strategies that reduce emissions from residential sources can effectively reduce the PM2.5 concentration during heavy pollution periods.
显示更多 [+] 显示较少 [-]Physiological and biochemical responses of Microcystis aeruginosa to phosphine 全文
2019
Sheng, Hong | Niu, Xiaojun | Song, Qi | Li, Yankun | Zhang, Runyuan | Zou, Dinghui | Lai, Senchao | Yang, Zhiquan | Tang, Zhenghua | Zhou, Shaoqi
The frequent outbreaks of cyanobacteria bloom are often accompanied by the generation and release of reduced phosphorus species (e.g., phosphine), which raises interesting questions regarding their potential algae-related effects. To clarify the physiological and biochemical responses of cyanobacteria to phosphine, Microcystis aeruginosa was treated with different concentrations of phosphine. Net photosynthetic rate, total antioxidant capacity (T-AOC), catalase (CAT) activity, and the concentrations of chlorophyll a, carotenoid and total protein were investigated and scanning electron microscopy (SEM) was conducted to elucidate the physiological and biochemical responses of M. aeruginosa to phosphine. The results showed that phosphine was beneficial to the growth of algal cells after M. aeruginosa acclimatized to the treatment of phosphine, and treatment with 2.48 × 10⁻² mg/L phosphine had a greater positive effect on the growth and reproduction of M. aeruginosa than 7.51 × 10⁻³ mg/L phosphine, in which most algal cells were smooth and flat on day 16. Treatment with the high concentration of phosphine (7.51 × 10⁻² mg/L) for 16 d reduced T-AOC, CAT activity, net photosynthetic rate, and the concentrations of chlorophyll a, carotenoid and total protein of M. aeruginosa to the minimums, resulting in the lysis and death of M. aeruginosa cells, which indicates phosphine has a toxic effect on the growth of algal cells. However, the high concentration of phosphine (7.51 × 10⁻² mg/L) had a greater positive effect on the growth of M. aeruginosa cells than the lower two (7.51 × 10⁻³ mg/L and 2.48 × 10⁻² mg/L) from 3 d to 12 d. Our findings provide insight into how phosphine potentially affects the growth of M. aeruginosa cells and the important roles of elevated phosphine on the outbreak of cyanobacteria bloom.
显示更多 [+] 显示较少 [-]Assessment of airborne enteric viruses emitted from wastewater treatment plant: Atmospheric dispersion model, quantitative microbial risk assessment, disease burden 全文
2019
Pasalari, Hasan | Ataei-Pirkooh, Angila | Aminikhah, Mahdi | Jafari, Ahmad Jonidi | Farzadkia, Mahdi
From a health prospective, it is critical to provide a comprehensive model which integrates all the parameters involved in virus transmission and its consequences on human body. In order to estimate the health risks, for workers and residents, associated with an exposure airborne viruses emitted from a wastewater treatment (WWTP), the concentration levels of viruses in emitted bioaerosols over a twelve-month period were measured by real-time polymerase chain reaction (RT-PCR). A combined Gaussian plum dispersion model and quantitative microbial risk assessment (QMRA) with Monte-Carlo simulation served as suitable explanatory tools to estimate the risk of acquiring gastrointestinal illness (GI) due to exposure to air containing Rotavirus (RoV) and Norovirus (NoV) bioaerosols. Additionally, DALY metric was applied to quantify the disability and mortality for workers and residents. RoV and NoV were detected above aeration tank with annual mean concentration 27 and 3099 (Viruses/m³.h), respectively. The medium calculated DALY indicator based on viral loads in contaminant source (RoV:5.76 × 10⁻² and NoV:1.23 × 10⁻¹) and estimated in different distances away (300–1000 m) (RoV:2.87 × 10⁻²- 2.75 × 10⁻² and NoV:1.14 × 10⁻¹-1.13 × 10⁻¹) were markedly higher than the threshold values recommended by US EPA (10⁻⁴ DALY pppy) and WHO (10⁻⁶ DALY pppy). The sensitivity analysis highlighted dose exposure and disease burden per case (DBPC) as two most influential factors for both workers and residents following exposure to two pathogens of concern. Due to high resistance and high concentration in the environment, the presence of RoV and NoV can intensify the consequences of diarrhea especially for children under five years of age; A comprehensible and transparent presentation of DALYs and QMRA can help decision makers and responsibilities to justify the priorities of exposure to wastewater in comparison with other risks of daily life.
显示更多 [+] 显示较少 [-]Bioaccumulation of some trace elements in tropical mangrove plants and snails (Can Gio, Vietnam) 全文
2019
Thanh-Nho, Nguyen | Marchand, Cyril | Strady, Emilie | Huu-Phat, Nguyen | Nhu-Trang, Tran-Thi
Mangrove sediments can store high amount of pollutants that can be more or less bioavailable depending on environmental conditions. When in available forms, these elements can be subject to an uptake by mangrove biota, and can thus become a problem for human health. The main objective of this study was to assess the distribution of some trace elements (Fe, Mn, Co, Ni, Cr, As, and Cu) in tissues of different plants and snails in a tropical mangrove (Can Gio mangrove Biosphere Reserve) developing downstream a megacity (Ho Chi Minh City, Vietnam). In addition, we were interested in the relationships between mangrove habitats, sediment quality and bioaccumulation in the different tissues studied. Roots and leaves of main mangrove trees (Avicennia alba and Rhizophora apiculata) were collected, as well as different snail species: Chicoreus capucinus, Littoraria melanostoma, Cerithidea obtusa, Nerita articulata. Trace elements concentrations in the different tissues were determined by ICP-MS after digestion with concentrated HNO₃ and H₂O₂. Concentrations differed between stands and tissues, showing the influence of sediment geochemistry, species specific requirements, and eventually adaptation abilities. Regarding plants tissues, the formation of iron plaque on roots may play a key role in preventing Fe and As translocation to the aerial parts of the mangrove trees. Mn presented higher concentrations in the leaves than in the roots, possibly because of physiological requirements. Non-essential elements (Ni, Cr and Co) showed low bioconcentration factors (BCF) in both roots and leaves, probably resulting from their low bioavailability in sediments. Regarding snails, essential elements (Fe, Mn, and Cu) were the dominant ones in their tissues. Most of snails were “macroconcentrators” for Cu, with BCF values reaching up to 42.8 for Cerithidea obtusa. We suggest that high quantity of As in all snails may result from its high bioavailability and from their ability to metabolize As.
显示更多 [+] 显示较少 [-]