细化搜索
结果 1461-1470 的 6,548
A full evaluation of chiral phenylpyrazole pesticide flufiprole and the metabolites to non-target organism in paddy field 全文
2020
Gao, Jing | Wang, Fang | Jiang, Wenqi | Miao, Jingwen | Wang, Peng | Zhou, Zhiqiang | Liu, Donghui
Pesticides applied to paddy fields may pose considerable danger to non-target aquatic organisms and further threaten human health. Flufiprole is a pesticide used in rice fields; considering the widespread existence of rice-fish-farming ecosystems, the acute toxicities of flufiprole enantiomers and its six metabolites (fipronil, flufiprole sulfide, flufiprole sulfone, detrifluoromethylsulfinyl flufiprole, desulfinyl flufiprole, and flufiprole amide) to four common aquatic organisms in rice fields including Misgurnus anguillicaudatus (pond loach), Carassius gibelio (Prussian carp), Pelophylax nigromaculatus (black-spotted frog), and Daphnia magna (water flea) were investigated. Genotoxicity, pathological changes and the effects on the antioxidant system of M. anguillicaudatus were also evaluated after exposure. The LC₅₀ (EC₅₀) values showed that fipronil and desulfinyl flufiprole were the most toxic compounds and were approximately about six times as toxic as flufiprole. No enantioselective toxicity was observed between the two enantiomers. The activity of antioxidant defense enzymes and the content of malondialdehyde (MDA) in the liver and gills of M. anguillicaudatus were significantly increased by the chemicals in most cases. In addition, fipronil and desulfinyl flufiprole were found to induce an increase in the micronucleus rate in M. anguillicaudatus. Histopathological analysis showed that the liver of M. anguillicaudatus was not significantly affected by flufiprole. Our study demonstrated a potential negative effect on flufiprole-treated aquatic organisms. As an alternative to fipronil, the environmental risk of flufiprole and its metabolites to non-target organisms in rice fields cannot be ignored.
显示更多 [+] 显示较少 [-]What is the most suitable native bee species from the Neotropical region to be proposed as model-organism for toxicity tests during the larval phase? 全文
2020
Rosa-Fontana, Annelise | Dorigo, Adna Suelen | Galaschi-Teixeira, Juliana Stephanie | Nocelli, Roberta C.F. | Malaspina, Osmar
Currently, Brazil has a full framework for pesticide risk assessment established for Apis mellifera, based on the North American approach. However, the use of Apis mellifera as model-organism as a surrogate for Brazilian native species of stingless bees has been questioned. Assessments on other stages of development than adult individual are essential. Our study aimed to standardize in vitro larval rearing method for the stingless bee species Scaptotrigona postica and Tetragonisca angustula, comparing the results to those obtained for M. scutellaris (previously described), for proposing the most suitable one for using in toxicological larval tests. We used the most efficient method for determining the toxicity of dimethoate on S. postica larvae. We presented the first comparative approach of responses to in vitro larval rearing methods among native bee species from Neotropical region, for use in risk assessment. Our results showed that S. postica was the most suitable native species to be proposed as model-organism. In addition, our results are also very useful for a ring test to validate the method, in accordance to OECD.
显示更多 [+] 显示较少 [-]Population-level variation in neonicotinoid tolerance in nymphs of the Heptageniidae 全文
2020
Rackliffe, D Riley | Hoverman, Jason T.
Anthropogenic activities can have significant ecological and evolutionary consequences on populations and communities. In the United States, neonicotinoid insecticides are widespread across the agricultural Midwest and frequently detected in stream systems. Their effect on Heptageniidae mayflies is a major concern because they are highly sensitive to neonicotinoids and have some of the lowest reported tolerance values of any organism. Our objective was to evaluate population-level variation in neonicotinoid sensitivity. We did so by conducting 96 h half maximal effective concentration (EC50₉₆₋ₕ) tests for the neonicotinoids clothianidin and thiamethoxam on populations of Stenacron, Stenonema, and Maccaffertium mayflies and testing for associations with agricultural landcover. Additionally, we collected water samples to assess temporal patterns of neonicotinoid presence in stream habitats. We found variation in neonicotinoid tolerance with EC50 values ranging from 4.9 μg/L to 32 μg/L and 19.8 μg/L to 86.5 μg/L for clothianidin and thiamethoxam, respectively. Agricultural landcover was associated with neonicotinoid tolerance for Stenacron and thiamethoxam but not for other comparisons. Moreover, water samples demonstrated that the amount of agricultural landcover was not a strong predictor of neonicotinoids presence in streams. Our data suggest that populations of Heptageniidae mayflies can vary substantially in neonicotinoid tolerance. Population-level variation should be considered in toxicity assessments and presents the potential for evolved tolerance.
显示更多 [+] 显示较少 [-]The prolonged disruption of a single-course amoxicillin on mice gut microbiota and resistome, and recovery by inulin, Bifidobacterium longum and fecal microbiota transplantation 全文
2020
Lin, Huai | Wang, Qing | Yuan, Meng | Liu, Lei | Chen, Zeyou | Zhao, Yanhui | Das, Ranjit | Duan, Yujing | Xu, Ximing | Xue, Yingang | Luo, Yi | Mao, Daqing
The usages of antibiotics in treating the pathogenic infections could alter the gut microbiome and associated resistome, causing long term adverse impact on human health. In this study, mice were treated with human-simulated regimen 25.0 mg kg⁻¹ of amoxicillin for seven days, and their gut microbiota and resistome were characterized using the 16S rRNA amplicons sequencing and the high-throughput qPCR, respectively. Meanwhile, the flora restorations after individual applications of inulin, Bifidobacterium longum (B. longum), and fecal microbiota transplantation (FMT) were analyzed for up to 35 days. The results revealed the prolonged negative impact of single course AMX exposure on mice gut microbiota and resistome. To be specific, pathobionts of Klebsiella and Escherichia-Shigella were significantly enriched, while prebiotics of Bifidobacterium and Lactobacillus were dramatically depleted. Furthermore, β-lactam resistance genes and efflux resistance genes were obviously enriched after amoxicillin exposure. Compared to B. longum, FMT and inulin were demonstrated to preferably restore the gut microbiota via reconstituting microbial community and stimulating specific prebiotic respectively. Such variation of microbiome caused their distinct alleviations on resistome alteration. Inulin earned the greatest elimination on AMX induced ARG abundance and diversity enrichment. FMT and B. longum caused remove of particular ARGs such as ndm-1, blaPER. Network analysis revealed that most of the ARGs were prone to be harbored by Firmicutes and Proteobacteria. In general, gut resistome shift was partly associated with the changing bacterial community structures and transposase and integron. Taken together, these results demonstrated the profound disruption of gut microbiota and resistome after single-course amoxicillin treatment and different restoration by inulin, B. longum and FMT.
显示更多 [+] 显示较少 [-]Following up mercury pollution in the Ebro Delta (NE Spain): Audouin’s gull fledglings as model organisms to elucidate anthropogenic impacts on the environment 全文
2020
Sánchez-Fortún, Moisès | Ouled-Cheikh, Jazel | Jover, Clara | García-Tarrasón, Manuel | Carrasco, Josep Lluís | Sanpera, Carola
As top-predators in marine ecosystems, seabirds are regarded as appropriate bioindicator species for a variety of contaminants. Mercury (Hg) is a global pollutant, which can biomagnify along marine and freshwater food webs. Therefore, mercury body burden in seabirds, such as gulls, will integrate information about pollution in the environment. In the Ebro Delta (NE Spain), legacy mercury pollution from a chlor-alkali industry located ca. 100 km upstream of the Ebro river mouth has been affecting the delta environment. We have analyzed a 15-year temporal series (2004–2019) of Hg in birds from a breeding colony of Audouin’s gull (Ichthyaetus audouinii) in the Ebro Delta to understand how fluctuations in Hg levels are coupled to human activities in the industrial area in the upstream region of the river. Stable isotopic signatures of C and N (δ¹³Cbᵤₗₖ and δ¹⁵Nbᵤₗₖ) are determined to characterize the trophic ecology of the species. Since only δ¹³Cbᵤₗₖ but not δ¹⁵Nbᵤₗₖ was associated with THg levels, we used compound-specific stable nitrogen isotope analysis of amino acids (AA-CSIA) to evaluate the causes of variation in δ¹⁵Nbᵤₗₖ to further investigate the idea of a decoupling of δ¹⁵Nbᵤₗₖ and THg over time. We found Audouin’s gull to be sensitive to Hg variations in the environment due to anthropogenic changes and to be a good indicator species for this contaminant in the Ebro Delta.
显示更多 [+] 显示较少 [-]The immunomodulatory effects of diesel exhaust particles in asthma 全文
2020
de Homdedeu M, | Cruz, Mj | Sanchez-Díez, S. | I, Ojanguren | Romero-Mesones, C. | J, Vanoirbeek | Velde G, Vande | X, Muñoz
Ammonium persulfate (AP) causes occupational asthma (OA) and diesel exhaust particles (DEP) exacerbate asthma; however, the role of DEP in asthma due to chemical agents has not been assessed to date. Therefore, the present work aims to study the immunomodulatory effects of DEP in a mouse model of chemical asthma. BALB/c ByJ mice were randomly divided into four experimental groups. On days 1 and 8, mice were dermally sensitized with AP or saline. On days 15, 18 and 21, they received intranasal instillations of AP or saline. Two experimental groups received DEP on every of the three challenges. Airway hyperresponsiveness (AHR), lung mechanics, pulmonary inflammation in bronchoalveolar lavage, leukocyte numbers in total lung tissue, oxidative stress and optical projection tomography (OPT) studies were assessed. The AP-sensitized and challenged group showed asthma-like responses, such as airway hyperresponsiveness, increased levels of eosinophils and NKs and lower numbers of monocytes and CD11b-Ly6C- dendritic cells (DCs). Mice exposed to DEP alone showed increased levels of neutrophils and NKs, reduced numbers of monocytes and alveolar macrophages, and increased levels of CD11b + Ly6C- DCs. The AP sensitized and AP + DEP challenged group also showed asthma-like symptoms such as AHR, as well as increased numbers of eosinophils, neutrophils, CD11b + Ly6C- DCs and decreased levels of total and alveolar macrophages and tolerogenic DCs. Particle deposition was visualised using OPT. In the DEP group the particles were distributed relatively evenly, while in the AP + DEP group they were seen mainly in the large conducting airways. The results show that DEP exposure activates the innate immune response and, together with AP, exacerbates asthma immune hallmarks. This mouse model provides the first evidence of the capacity of DEPs to increase CD11b + Ly6C- (Th2-related) DCs. This study also demonstrates, for the first time, a differential deposition pattern of DEP in lungs depending on asthma status.
显示更多 [+] 显示较少 [-]Health risk-oriented source apportionment of PM2.5-associated trace metals 全文
2020
Xie, Jiawen | Jin, Ling | Cui, Jinli | Luo, Xiaosan | Li, Jun | Zhang, Gan | Li, Xiangdong
In health-oriented air pollution control, it is vital to rank the contributions of different emission sources to the health risks posed by hazardous components in airborne fine particulate matters (PM₂.₅), such as trace metals. Towards this end, we investigated the PM₂.₅-associated metals in two densely populated regions of China, the Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions, across land-use gradients. Using the positive matrix factorization (PMF) model, we performed an integrated source apportionment to quantify the contributions of the major source categories underlying metal-induced health risks with information on the bioaccessibility (using simulated lung fluid) and speciation (using synchrotron-based techniques) of metals. The results showed that the particulate trace metal profiles reflected the land-use gradient within each region, with the highest concentrations of anthropogenically enriched metals at the industrial sites in the study regions. The resulting carcinogenic risk that these elements posed was higher in the YRD than in the PRD. Chromium was the dominant contributor to the total excessive cancer risks posed by metals while manganese accounted for a large proportion of non-carcinogenic risks. An elevated contribution from industrial emissions was found in the YRD, while traffic emissions and non-traffic combustion (the burning of coal/waste/biomass) were the common dominant sources of cancer and non-cancer risks posed by metals in both regions. Moreover, the risk-oriented source apportionment of metals did not mirror the mass concentration-based one, suggesting the insufficiency of the latter to inform emission mitigation in favor of public health. While providing region-specific insights into the quantitative contribution of major source categories to the health risks of PM₂.₅-associated trace metals, our study highlighted the need to consider the health protection goal-based source apportionment and emission mitigation in supplement to the current mass concentration-based framework.
显示更多 [+] 显示较少 [-]Mercury bioaccumulation in Tilefish (Lopholatilus chamaeleonticeps) from offshore waters of South Carolina, USA 全文
2020
White, D Byron | Sinkus, Wiley | Altman, Kenneth C.
Mercury (Hg) concentrations in Tilefish (Lopholatilus chamaeleonticeps) have been reported to be one of the highest of all fish species, resulting in advisories that, historically, have recommended zero consumption. The current study assesses Hg bioaccumulation in Tilefish targeted by the commercial fisheries operating off the coast of South Carolina, USA. We provide results for an under-sampled region and explore how life history potentially impacts Hg uptake in Tilefish. Mercury concentration in Tilefish muscle tissue ranged from 0.10 to 0.99 ppm, with a mean of 0.23 ppm (n = 63). The majority of Tilefish samples (95%) were within the “Good Choices” range for consuming at least one serving per week, with 62% being within the range considered best for eating two meals a week”, per suggestion by the US EPA and US FDA (2017). The present study of Tilefish from the western Atlantic further substantiates the importance of monitoring Hg in commercial fish species regionally.
显示更多 [+] 显示较少 [-]Effects of cadmium, inorganic mercury and methyl-mercury on the physiology and metabolomic profiles of shoots of the macrophyte Elodea nuttallii 全文
2020
Cosio, Claudia | Renault, David
Effects of cadmium, inorganic mercury and methyl-mercury on the physiology and metabolomic profiles of shoots of the macrophyte Elodea nuttallii 全文
2020
Cosio, Claudia | Renault, David
Macrophytes are known to bioaccumulate metals, but a thorough understanding of tolerance strategies and molecular impact of metals in aquatic plants is still lacking. The present study aimed to compare Hg and Cd effects in a representative macrophyte, Elodea nuttallii using physiological endpoints and metabolite profiles in shoots and cytosol.Exposure 24 h to methyl-Hg (30 ng L⁻¹), inorganic Hg (70 ng L⁻¹) and Cd (280 μg L⁻¹) did not affect photosynthesis, or antioxidant enzymes despite the significant accumulation of metals, confirming a sublethal stress level. In shoots, Cd resulted in a higher level of regulation of metabolites than MeHg, while MeHg resulted in the largest number of regulated metabolites and IHg treatment regulated no metabolites significantly. In cytosol, Cd regulated more metabolites than IHg and only arginine, histidine and mannose were reduced by MeHg exposure. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of data suggested that exposure to MeHg resulted in biochemical changes including aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, nitrogen metabolism, arginine and proline metabolism, cyanoamino acid metabolism, while the treatment of Cd stress caused significant variations in aminoacyl-tRNA biosynthesis and branched-chain amino acids pathways. Data supports an impact of MeHg on N homeostasis, while Cd resulted in an osmotic stress-like pattern and IHg had a low impact. Marked differences in the responses to MeHg and IHg exposure were evidenced, supporting different molecular toxicity pathways and main impact of MeHg on non-soluble compartment, while main impact of IHg was on soluble compartment. Metabolomics was used for the first time in this species and proved to be very useful to confirm and complement recent knowledge gained by transcriptomics and proteomics, highlighting the high interest of multi-omics approaches to identify early impact of environmental pollution.
显示更多 [+] 显示较少 [-]Effects of cadmium, inorganic mercury and methyl-mercury on the physiology and metabolomic profiles of shoots of the macrophyte Elodea nuttallii 全文
2020
Cosio, Claudia | Renault, D | Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO) ; Institut National de l'Environnement Industriel et des Risques (INERIS)-Université de Reims Champagne-Ardenne (URCA)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-SFR Condorcet ; Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS) | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Experiments were performed at Geneva University during CC previous position. Authors thank Rebecca Beauvais-Fluck, Floriane Larras, Beatriz Lobo, Nicole Regier and Debora Tanaami for their help in the management of cultures, sampling of water and the preparation of cytosol extracts. The Swiss National Science Foundation (contracts n°205321_138254 and 200020_157173).
International audience | Macrophytes are known to bioaccumulate metals, but a thorough understanding of tolerance strategies and molecular impact of metals in aquatic plants is still lacking. The present study aimed to compare Hg and Cd effects in a representative macrophyte, Elodea nuttallii using physiological endpoints and metabolite profiles in shoots and cytosol. Exposure 24 h to methyl-Hg (30 ng L), inorganic Hg (70 ng L) and Cd (280 μg L) did not affect photosynthesis, or antioxidant enzymes despite the significant accumulation of metals, confirming a sublethal stress level. In shoots, Cd resulted in a higher level of regulation of metabolites than MeHg, while MeHg resulted in the largest number of regulated metabolites and IHg treatment regulated no metabolites significantly. In cytosol, Cd regulated more metabolites than IHg and only arginine, histidine and mannose were reduced by MeHg exposure. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of data suggested that exposure to MeHg resulted in biochemical changes including aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, nitrogen metabolism, arginine and proline metabolism, cyanoamino acid metabolism, while the treatment of Cd stress caused significant variations in aminoacyl-tRNA biosynthesis and branched-chain amino acids pathways. Data supports an impact of MeHg on N homeostasis, while Cd resulted in an osmotic stress-like pattern and IHg had a low impact. Marked differences in the responses to MeHg and IHg exposure were evidenced, supporting different molecular toxicity pathways and main impact of MeHg on non-soluble compartment, while main impact of IHg was on soluble compartment. Metabolomics was used for the first time in this species and proved to be very useful to confirm and complement recent knowledge gained by transcriptomics and proteomics, highlighting the high interest of multi-omics approaches to identify early impact of environmental pollution.
显示更多 [+] 显示较少 [-]Insights into degradation pathways and toxicity changes during electro-catalytic degradation of tetracycline hydrochloride 全文
2020
Liu, Haiyang | Qu, Jiao | Zhang, Tingting | Ren, Miao | Zhang, Zhaocheng | Cheng, Fangyuan | He, Dongyang | Zhang, Ya-nan
The removal of antibiotics has attracted much attention due to their extremely high adverse impacts on the environment. However, the potential risks of degradation intermediates are seldom reported. In this work, the influence of different factors on the electro-catalytic degradation efficiency of tetracycline hydrochloride (TCH) by the prepared carbon nanotubes/agarose/indium tin oxide (CNTs/AG/ITO) electrode was investigated. Under optimal conditions (10 wt% CNTs dosage, pH = 7), the maximum degradation efficiency for TCH (10 mg L⁻¹) reached up to 96% within 30 min treatment with 4 V potential. Superoxide anions (•O₂⁻) played an important role in the electro-catalytic degradation. Totally 10 degradation intermediates were identified using HPLC-MS/MS, and the degradation pathway was proposed. Toxicities of the parent antibiotic and the identified intermediates were calculated using the ECOSAR (Ecological Structure Activity Relationship) program in EPISuite, and results showed that more toxic intermediates were generated. The maximal chronic toxicity for green algae of the intermediate increased 1439.92 times. Furthermore, antimicrobial activity was further verified by disk agar biocidal tests with Escherichia coli ATCC25922 and higher biotoxicity intermediates compared with parent compounds were confirmed to be formed. Therefore, more attention should be paid on the potential risk of degradation intermediates in the treatment of wastewater containing antibiotics.
显示更多 [+] 显示较少 [-]