细化搜索
结果 151-160 的 4,935
Urinary parabens in children from South China: Implications for human exposure and health risks 全文
2019
Lu, Shaoyou | Ren, Lu | Liu, Yanlin | Ma, Huimin | Liu, Shan | Zhu, Zhou | Tang, Zhi | Kang, Li | Liao, Shicheng
Parabens are extensively applied in cosmetics, drugs or food as preservatives and have become common pollutants in environmental media. However, data on human exposure to these chemicals is still limited, especially for children. This study aimed to investigate parabens in urine samples of children and to evaluate the cumulative risk of paraben exposure. Five short-chain parabens were measured in 255 urine samples collected from children in a kindergarten and elementary schools from South China. Methyl paraben (MeP), ethyl paraben (EtP) and n-propyl paraben (PrP) were widely detected in urine samples (detection rates > 94.9%), indicating their widespread exposure. The urinary median concentrations of MeP, EtP and PrP were 2.25, 0.33 and 0.50 μg/L, respectively. Significantly positive correlations (p < 0.01) were observed between MeP and PrP in urine, suggesting similar sources and/or metabolic pathways of these two chemicals. The median estimated daily intakes (EDIs) of parabens were determined to be 18.1 and 9.79 μg/kg-bw/day for kindergarten children and elementary school students, respectively. Estimation of human intake and exposure risks indicated potential risks of PrP exposure for elementary school students. This is the first study addressing paraben exposure in South China children.
显示更多 [+] 显示较少 [-]The potential of microplastics as carriers of metals 全文
2019
Godoy, V. | Blázquez, G. | Calero, M. | Quesada, L. | Martín-Lara, M.A.
Microplastics can adsorb chemical pollutants such as metals or pharmaceuticals, and transferred them along the food chain. In this work, an investigation of the adsorption of Cd, Co, Cr, Cu, Ni, Pb and Zn by five different types of microplastics was performed in Milli-Q water and natural waters (seawater, urban wastewater and irrigation water) via a series of batch adsorption experiments. The effects of concentration of metals and physicochemical characteristics of polymers were particularly studied. Results revealed a significant adsorption of lead, chromium and zinc on microplastics, especially on polyethylene and polyvinyl chloride. In the case of polyethylene terephthalate, it showed little adsorption capacity. Specific surface, porosity and morphology are characteristics that affect the molecular interactions. The adsorption isotherms were better described by Langmuir model, which indicates that the main adsorption mechanism might be chemical adsorption. Finally, results obtained in natural waters indicated that dissolved organic matter may play a major role on metal adsorption on microplastics. Results showed an enhancement of metal adsorption in waters with high chemical and biological oxygen demands as urban wastewater and irrigation water.
显示更多 [+] 显示较少 [-]Fate, occurrence and potential adverse effects of antimicrobials used for treatment of tuberculosis in the aquatic environment in South Africa 全文
2019
Magwira, Cliff Abdul | Aneck-Hahn, Natalie | Taylor, M. B. (Maureen Beatrice)
The consumption of tonnes of anti-tubercular and other anti-microbial compounds for the control of the tuberculosis epidemic and other opportunistic diseases associated with human immunodeficiency virus presents tuberculosis-endemic countries such as South Africa, with a problem regarding the occurrence and fate of these compounds in the aquatic environment. The majority of these compounds are not readily degradable and could persist in the aquatic environment with potential detrimental effect on the aquatic microbiota ecosystem, development and dissemination of anti-microbial resistance as well as chronic toxicity in humans due to long-term exposure. This review summarises and discusses the occurrence, fate and potential adverse effects of the commonly administered anti-tubercular compounds in the aquatic environment in tuberculosis-endemic countries and South Africa in particular. It further attempts to identify information gaps in the literature regarding anti-tubercular compounds in the environment that needs further investigation so that their risk can be comprehensively assessed and impact mitigated.
显示更多 [+] 显示较少 [-]Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran 全文
2019
Abbasi, Sajjad | Keshavarzi, Behnam | Moore, Farid | Turner, Andrew | Kelly, Frank J. | Dominguez, Ana Oliete | Jaafarzadeh, Neemat
While the distribution and effects of microplastics (MPs) have been extensively studied in aquatic systems, there exits little information on their occurrence in the terrestrial environment and their potential impacts on human health. In the present study, street dust and suspended dust were collected from the city and county of Asaluyeh, Iran. Samples were characterized by various microscopic techniques (fluorescence, polarized light, SEM) in order to quantify and classify MPs and microrubbers (MRs) in the urban and industrial environments that are potentially ingestible or inhalable by humans. In < 5-mm street dust retrieved from 15 sites, there were an average of 900 MPs and 250 MRs per 15 g of sample, with MPs exhibiting a range of colours and sizes (<100 to >1000 μm). Most street dust samples were dominated by spherical and film-like particles and MRs largely made up of different sizes of black fragments and fibrous particulates. Airborne dust collected daily over an eight-day period at two locations revealed the ubiquity of fibrous MPs of sizes ranging from about 2 μm to 100 μm and an abundance of about 1 per m⁻³. These samples contained small MR fragments whose precise characteristics were more difficult to define. Based on the median concentrations in street dust, estimates of acute exposure through ingestion are about 5 and 15 MP d⁻¹ and 2 and 7 MR d⁻¹ for construction workers and young children, respectively. Quantities of inhalable particulates were more difficult to define but the potential toxicity of MPs and MRs taken in by this route was evaluated from assays performed using particulates isolated from street dusts in the presence of an artificial lung fluid. Both types of particle exhibited oxidative potential, with MPs displaying consumptions of different antioxidants that were comparable with corresponding values for a reference urban particulate dust but lower than those for London ambient particulate matter. Thus, MPs and MRs contribute towards the health impacts of urban and industrial dusts but their precise roles remain unclear and warrant further study.
显示更多 [+] 显示较少 [-]Estimation of health and economic benefits based on ozone exposure level with high spatial-temporal resolution by fusing satellite and station observations 全文
2019
Liang, Shuang | Li, Xiaoli | Teng, Yu | Fu, Hongchen | Chen, Li | Mao, Jian | Zhang, Hui | Gao, Shuang | Sun, Yanling | Ma, Zhenxing | Azzi, Merched
In recent years, ozone pollution has become more and more serious in China. Several epidemiological studies have demonstrated the correlation between short-term ozone exposure and several health risks including all-cause mortality, cardiovascular mortality, and respiratory mortality. In this study, the daily ozone exposure levels with 10 km × 10 km resolution were estimated based on satellite data derived from Ozone Monitoring Instrument (OMI) and the monitoring data. The health impacts for potential decrease in the daily ozone concentration and the corresponding economic benefits in 2016 were estimated by applying the environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) model. By reducing the daily maximum 8-h average concentration of ozone to 100 μg/m³, the estimated avoided all-cause mortalities were 120 × 10³ (95% confidence interval (CI): 67 × 10³, 160 × 10³) cases and the correspondingly economic benefits ranged from 36 to 64 billion CNY using amended human capital (AHC) and willingness to pay (WTP) method in 2016. If the daily maximum 8-h average concentration of ozone were rolled back to 70 μg/m³, the estimated avoided all-cause mortalities were 160 × 10³ (95% CI: 98 × 10³, 230 × 10³) cases and economic benefits ranged from 54 to 95 billion CNY based on AHC and WTP methods.
显示更多 [+] 显示较少 [-]The response profile to chronic radiation exposure based on the transcriptome analysis of Scots pine from Chernobyl affected zone 全文
2019
Duarte, Gustavo T. | Volkova, Polina Yu | Geras'kin, Stanislav A.
The response profile to chronic radiation exposure based on the transcriptome analysis of Scots pine from Chernobyl affected zone 全文
2019
Duarte, Gustavo T. | Volkova, Polina Yu | Geras'kin, Stanislav A.
Radioactive contamination of the natural areas is one of the most long-lasting anthropogenic impacts on the environment. Scots pine (Pinus sylvestris L.) is a promising organism for radiation-related research because of its high radiosensitivity, but the genome size of Pinacea species has imposed obstacles for high-throughput studies so far. In this work, we conducted the analysis of the de novo assembled transcriptome of Scots pine populations growing in the Chernobyl-affected zone, which is still today contaminated with radionuclides because of the accident at the nuclear power plant in 1986. The transcriptome profiles indicate a clear pattern of adaptive stress response, which seems to be dose-dependent. The transcriptional response indicates a continuous modulation of the cellular redox system, enhanced expression of chaperones and histones, along with the control of ions balance. Interestingly, the activity of transposable element families is inversely correlated to the exposure levels to radiation. These adaptive responses, which are triggered by radiation doses 30 times lower than the one accepted as a safe for biota species by international regulations, suggest that the environmental management in radiation protection should be reviewed.
显示更多 [+] 显示较少 [-]The response profile to chronic radiation exposure based on the transcriptome analysis of Scots pine from Chernobyl affected zone 全文
2019
Duarte, Gustavo | Volkova Yu, Polina | Institut Jean-Pierre Bourgin (IJPB) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Russian Institute of Radiology and Agroecology ; Partenaires INRAE | Russian Science FoundationRussian Science Foundation (RSF) [14-14-00666]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-34-20012]
International audience | Radioactive contamination of the natural areas is one of the most long-lasting anthropogenic impacts on the environment. Scots pine (Pinus sylvestris L.) is a promising organism for radiation-related research because of its high radiosensitivity, but the genome size of Pinacea species has imposed obstacles for high-throughput studies so far. In this work, we conducted the analysis of the de novo assembled transcriptome of Scots pine populations growing in the Chernobyl-affected zone, which is still today contaminated with radionuclides because of the accident at the nuclear power plant in 1986. The transcriptome profiles indicate a clear pattern of adaptive stress response, which seems to be dose-dependent. The transcriptional response indicates a continuous modulation of the cellular redox system, enhanced expression of chaperones and histones, along with the control of ions balance. Interestingly, the activity of transposable element families is inversely correlated to the exposure levels to radiation. These adaptive responses, which are triggered by radiation doses 30 times lower than the one accepted as a safe for biota species by international regulations, suggest that the environmental management in radiation protection should be reviewed.
显示更多 [+] 显示较少 [-]In silico study of molecular mechanisms of action: Estrogenic disruptors among phthalate esters 全文
2019
Zhu, Qian | Liu, Lanhua | Zhou, Xiaohong | Ma, Mei
Phthalate esters (PAEs), as widely used plasticizers, have been concerned for their possible disruption of estrogen functions via binding to and activating the transcription of estrogen receptors (ERs). Nevertheless, the computational interpretation of the mechanism of ERs activities modulated by PAEs at the molecular level is still insufficient, which hinders the reliable screening of the ERs-active PAEs with high speed and high throughput. To bridge the gap, the in silico simulations considering the effects of coactivators were accomplished to explore the molecular mechanism of action for the purpose of predicting the estrogenic potencies of PAEs. The transcriptional activation functions of human ERα (hERα) modulated by PAEs is predicted via the simulations including binding interaction of PAEs and hERα, conformational changes of PAEs-hERα complexes and recruitment of coactivators. Molecular insight into the diverse estrogen mechanism of action among PAEs with regard to hERα agonists and selective estrogen receptor modulators (SERMs) is provided. Agonist-modulated conformational change of hERα leads to the optimal exposure of its Activation Function 2 (AF-2) surface which, in turn, facilitates the recruitment of coactivators, therefore promoting the transcriptional activation functions of hERα. Conversely, binding interaction of hERα with SERMs among PAEs leads to the conformational change with blocked AF-2 surface, thus preventing the recruitment of coactivators and consequently inhibiting the AF-2 activity. The two-hybrid recombinant yeast is experimentally used for verification. The established in silico evaluation methodology exhibits great promise to speed up the prediction of chemicals which work as hERα agonist or SERMs.
显示更多 [+] 显示较少 [-]Phytotoxicity of individual and binary mixtures of rare earth elements (Y, La, and Ce) in relation to bioavailability 全文
2019
Gong, Bing | He, Erkai | Qiu, Hao | Li, Jianqiu | Ji, Jie | Zhao, Ling | Cao, Xinde
Rare earth elements (REEs) are typically present as mixtures in the environment, but a quantitative understanding of mixture toxicity and interactions of REEs is still lacking. Here, we examined the toxicity to wheat (Triticum aestivum L.) of Y, La, and Ce when applied individually and in combination. Both concentration addition (CA) and independent action (IA) reference models were used for mixture toxicity analysis because the toxicity mechanisms of REEs remain obscure. Upon single exposure, the EC50s of Y, La, and Ce, expressed as dissolved concentrations, were 1.73 ± 0.24 μM, 2.59 ± 0.23 μM, and 1.50 ± 0.22 μM, respectively. The toxicity measured with relative root elongation followed La < Y ≈ Ce, irrespective of the dose descriptors. The use of CA and IA provided similar estimates of REE mixture interactions and toxicity. When expressed as dissolved metal concentrations, nearly additive effects were observed in Y-La and La-Ce mixtures, while antagonistic interactions were seen in Y-Ce mixtures. When expressed as free metal activities, antagonistic interactions were found for all three binary mixtures. This can be explained by a competitive effect of REEs ions for binding to the active sites of plant roots. The application of a more elaborate MIXTOX model in conjunction with the free ion activities, which incorporates the non-additive interactions and bioavailability-modifying factors, well predicted the mixture toxicity (with >92% of toxicity variations explained). Our results highlighted the importance of considering mixture interactions and subsequent bioavailability in assessing the joint toxicity of REEs.
显示更多 [+] 显示较少 [-]Athabasca oil sands region snow contains efficient micron and nano-sized ice nucleating particles 全文
2019
The Athabasca Oil Sands Region (AOSR) in Alberta, Canada, is an important source of atmospheric pollutants, such as aerosols, that have repercussions on both the climate and human health. We show that the mean freezing temperature of snow-borne particles from AOSR was elevated (−7.1 ± 1.8 °C), higher than mineral dust which freezes at ∼ −15 °C and is recognized as one of the most relevant ice nuclei globally. Ice nucleation of nanosized snow samples indicated an elevated freezing ability (−11.6 ± 2.0 °C), which was statistically much higher than snow-borne particles from downtown Montreal. AOSR snow had a higher concentration (∼2 orders of magnitude) of >100 nm particles than Montreal. Triple quadrupole ICP-(QQQ)-MS/MS analysis of AOSR and Montreal snow demonstrated that most concentrations of metals, including those identified as emerging nanoparticulate contaminants, were much more elevated in AOSR in contrast to Montreal: 34.1, 34.1, 16.6, 5.8, 0.3, 0.1, and 9.4 mg/m³ for Cr, Ni, Cu, As, Se, Cd, and Pb respectively, in AOSR and 1.3, 0.3, 2.0, <0.03, 0.1, 0.03, and 1.2 mg/m³ in Montreal snow. High-resolution Scanning Transmission Electron Microscopy/Energy-dispersive X-ray Spectroscopy (STEM-EDS) imaging provided evidence for various anthropogenic nano-materials, including carbon nanotubes resembling structures, in AOSR snow up to 7–25 km away from major oil sands upgrading facilities. In summary, particles characterized as coming from oil sands are more efficient at ice nucleation. We discuss the potential impacts of AOSR emissions on atmospheric and microphysical processes (ice nucleation and precipitation) both locally and regionally.
显示更多 [+] 显示较少 [-]On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): A case of silver nanoparticles toxicity 全文
2019
Asadi Dokht Lish, Reyhaneh | Johari, Seyed Ali | Sarkheil, Mehrdad | Yu, Il Je
The genus Artemia sp. has been accepted as a reliable model organism for aquatic toxicity and nanotoxicity experiments, as far as the ISO TS 20787 has recently been published to standardize nanotoxicity test with this organism. Experimental and environmental conditions may affect the toxicity of nanomaterials on aquatic organisms including Artemia sp. nauplii. In this study, acute toxicity effects of silver nanoparticles (AgNPs) on the nauplii of Artemia salina was investigated under various conditions (e.g. different lights, salinities, temperatures, volume and agitation of exposure media and instar stages of nauplii). The EC values were calculated using Probit program and all data were analyzed statistically by SPSS software. At all test conditions, the immobilization rate of Artemia nauplii increased in a concentration-dependent manner (P < 0.05). The sensitivity of instar stage II to different concentrations of AgNPs was significantly higher than instar I (P < 0.05). The toxicity effect of AgNPs was affected by alteration of environmental conditions, so that the effective concentration (EC) values for instar I of A. salina decreased with increasing water temperature, decreasing water salinity and in continuous darkness condition. The EC50 value of AgNPs was significantly lower in 100 mL beakers (21.35 ± 5.67 mg L−1) than 10 mL well plates (42.44 ± 11.30 mg L−1). Agitation of exposure media did not affect the toxicity of AgNPs. The results indicated that the experimental and environmental conditions influence on the toxicity of AgNPs in the nauplii of A. salina.
显示更多 [+] 显示较少 [-]