细化搜索
结果 1501-1510 的 2,459
Cell cycle stage specific application of municipal landfill leachates to assess the genotoxicity in root meristem cells of barley (Hordeum vulgare)
2014
Srivastava, Anjil Kumar | Kumar, Ravi Ranjan | Singh, Ashok Kumar
Municipal solid wastes (MSW) are unavoidable sources of environmental pollution. Improper disposal of municipal waste results in the leaching of toxic metals and organic chemicals, which can contaminate the surface and ground water leading to serious health hazard. In this study, the toxic effects of the leachate prepared from municipal solid waste samples were examined in root meristem cells of barley (Hordeum vulgare L.) at various stages of cell cycle, i.e., G₁, S, and G₂. Seeds of barley were exposed to 2.5, 5, and 10 % of leachates in soil and aqueous media in 48 h at different cell cycle stages. The physicochemical data of the present study revealed that municipal solid waste leachate contains high amount of heavy metals, which significantly affected growth and physiological activities of barley. Significant inhibition in hypocotyl length, germination, and mitotic index were observed at all concentration of leachate treatment. Induction of chromosomal aberrations (CA’s) and micronuclei (MN) formation were also observed with different concentrations of leachate treatment at 7, 17, and 27 h of presoaking durations, which falls in G₁, S, and G₂phase of the cell cycle, respectively. Also, exposure of leachate at S phase of the cell cycle had significant effects in barley through chromosomal aberration and micronuclei formation.
显示更多 [+] 显示较少 [-]Reduction of Fusarium rot and maintenance of fruit quality in melon using eco-friendly hot water treatment
2014
Sui, Yuan | Droby, Samir | Zhang, Danfeng | Wang, Wenjie | Liu, Yongsheng
Significant losses in harvested fruit can be directly attributable to decay fungi and quality deterioration. Hot water treatment (HWT) has been demonstrated to be an effective and economic environment-friendly approach for managing postharvest decay and maintaining fruit quality. In this study, the effects of HWT (45 °C for 10, 15, 20, and 25 min) on in vitro growth of Fusarium oxysporum, in vivo Fusarium rot, and natural decay of melon were investigated. HWT inhibited spore germination and germ tube elongation of F. oxysporum. Protein impairment and ATP consumption triggered by HWT contributed to the inhibitory effect. Results of in vivo studies showed that HWT effectively controlled Fusarium rot and natural decay of melon. Correspondingly, HWT induced a significant increase in content of total phenolic compounds and lignin of melon. These findings indicate that the effects of HWT on Fusarium rot may be associated with the direct fungal inhibition and the elicitation of defense responses in fruit. Importantly, HWT used in this study had beneficial effects on fruit quality as well. HWT may represent an effective non-chemical approach for management of postharvest Fusarium rot.
显示更多 [+] 显示较少 [-]Bioremediation potential of microorganisms from a sandy beach affected by a major oil spill
2014
Reis, Izabela | Almeida, C. Marisa R. | Magalhães, Catarina M. | Cochofel, Jaqueline | Guedes, Paula | Basto, M. Clara P. | Bordalo, Adriano A. | Mucha, Ana P.
The aim of this work was to evaluate the bioremediation potential of microorganisms from intertidal sediments of a sandy beach affected by a major oil spill 7 years before and subject to chronic petroleum contamination since then. For that, the response of microorganisms to a new oil contamination was assessed in terms of community structure, abundance, and capacity to degrade hydrocarbons. Experiments were carried out under laboratory-controlled conditions by mixing sediment with crude oil with three different nitrogen supplementations in 50 ml serum bottles under constant shake for 15 days. Autochthonous microorganisms were able to respond to the new oil contamination by increasing their abundance (quantified by DAPI) and changing the community structure (evaluated by DGGE). This response was particularly clear for some specific bacterial groups such as Pseudomonas, Actinomycetales, and Betaproteobacteria. These communities presented an important potential for hydrocarbon degradation (up to 85 % for TPHs and 70 % for total PAHs), being the biodegradation stimulated by addition of an appropriate amount of nitrogen.
显示更多 [+] 显示较少 [-]Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification
2014
Asadi, Somayeh | Hassan, Marwa | Nadiri, Ataallah | Dylla, Heather
In recent years, the application of titanium dioxide (TiO₂) as a photocatalyst in asphalt pavement has received considerable attention for purifying ambient air from traffic-emitted pollutants via photocatalytic processes. In order to control the increasing deterioration of ambient air quality, urgent and proper risk assessment tools are deemed necessary. However, in practice, monitoring all process parameters for various operating conditions is difficult due to the complex and non-linear nature of air pollution-based problems. Therefore, the development of models to predict air pollutant concentrations is very useful because it can provide early warnings to the population and also reduce the number of measuring sites. This study used artificial neural network (ANN) and neuro-fuzzy (NF) models to predict NOₓconcentration in the air as a function of traffic count (Tᵣ) and climatic conditions including humidity (H), temperature (T), solar radiation (S), and wind speed (W) before and after the application of TiO₂on the pavement surface. These models are useful for modeling because of their ability to be trained using historical data and because of their capability for modeling highly non-linear relationships. To build these models, data were collected from a field study where an aqueous nano TiO₂solution was sprayed on a 0.2-mile of asphalt pavement in Baton Rouge, LA. Results of this study showed that the NF model provided a better fitting to NOₓmeasurements than the ANN model in the training, validation, and test steps. Results of a parametric study indicated that traffic level, relative humidity, and solar radiation had the most influence on photocatalytic efficiency.
显示更多 [+] 显示较少 [-]Applying Raman spectroscopy to the assessment of the biodegradation of industrial polyurethanes wastes
2014
Cregut, Mickael | Bedas, Marion | Assaf, Ali | Durand-Thouand, Marie-José | Thouand, Gérald
Polyether-based polyurethanes (PBP) are extremely problematic polymers due to their long persistence in the environment. Moreover, the assessment of PBP biodegradation remains biased due to the inability of conventional methods to determine how their diverse subunits are degraded. To improve our knowledge of PBP biodegradation, we used Raman spectroscopy to identify patterns of PBP biodegradation. Specifically, PBP biodegradation was assessed using a microbial inoculum isolated from an industrial soil in which polyurethanes have been buried for 40 years. During a 28-day biodegradation assay, the PBP biodegradation level reached 27.5 % (w/w), in addition to undergoing profound alteration of the PBP composition as identified by chemical analyses. After microbial degradation, Raman analyses revealed the disappearance of the polymer’s amorphous region, which contains a high polyol content, whereas the isocyanate-rich crystalline regions were preserved. The use of Raman spectroscopy appears to be a particularly useful tool to enhance our assessment of polymer biodegradation.
显示更多 [+] 显示较少 [-]Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nanoparticles and zinc accumulation in plants
2014
Hu, Changwei | Liu, Xu | Li, Xiuling | Zhao, Yongjun
The adverse effects of zinc oxide nanoparticles (ZnO NPs) with an average diameter of 25 nm on the aquatic plant Salvinia natans (L.) All. were determined. Growth, superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase activity, and chlorophyll content of the plants were measured after 7 days of exposure to different concentrations of ZnO NPs (1 to 50 mg L⁻¹). The particle distribution in the culture medium (without plants) during the first 24 h was determined using a Nanotrac 250 particle analyzer. We also investigated the zinc accumulation in leaves and roots of the plant after 7 days of exposure. Exposure to 50 mg L⁻¹ZnO NPs significantly increased SOD and CAT activities (P < 0.05) and significantly depressed photosynthetic pigments (P < 0.05). However, plant growth was not significantly affected (P > 0.05). NPs completely precipitated at the bottom of the container at 8 h except for the portions of dissolution and aggregation on the roots. ZnO NPs at a concentration of 50 mg L⁻¹can adversely affect S. natans, and their stress is affected by their aggregation and dissolution.
显示更多 [+] 显示较少 [-]Field controlled experiments on the physiological responses of maize (Zea mays L.) leaves to low-level air and soil mercury exposures
2014
Niu, Zhenchuan | Zhang, Xiaoshan | Wang, Sen | Zeng, Ming | Wang, Zhangwei | Zhang, Yi | Ci, Zhijia
Thousands of tons of mercury (Hg) are released from anthropogenic and natural sources to the atmosphere in a gaseous elemental form per year, yet little is known regarding the influence of airborne Hg on the physiological activities of plant leaves. In the present study, the effects of low-level air and soil Hg exposures on the gas exchange parameters of maize (Zea mays L.) leaves and their accumulation of Hg, proline, and malondialdehyde (MDA) were examined via field open-top chamber and Hg-enriched soil experiments, respectively. Low-level air Hg exposures (<50 ng m⁻³) had little effects on the gas exchange parameters of maize leaves during most of the daytime (p > 0.05). However, both the net photosynthesis rate and carboxylation efficiency of maize leaves exposed to 50 ng m⁻³air Hg were significantly lower than those exposed to 2 ng m⁻³air Hg in late morning (p < 0.05). Additionally, the Hg, proline, and MDA concentrations in maize leaves exposed to 20 and 50 ng m⁻³air Hg were significantly higher than those exposed to 2 ng m⁻³air Hg (p < 0.05). These results indicated that the increase in airborne Hg potentially damaged functional photosynthetic apparatus in plant leaves, inducing free proline accumulation and membrane lipid peroxidation. Due to minor translocation of soil Hg to the leaves, low-level soil Hg exposures (<1,000 ng g⁻¹) had no significant influences on the gas exchange parameters, or the Hg, proline, and MDA concentrations in maize leaves (p > 0.05). Compared to soil Hg, airborne Hg easily caused physiological stress to plant leaves. The effects of increasing atmospheric Hg concentration on plant physiology should be of concern.
显示更多 [+] 显示较少 [-]Relevance of biotic parameters in the assessment of the spatial distribution of gastrointestinal metal and protein levels during spawning period of European chub (Squalius cephalus L.)
2014
Filipović Marijić, Vlatka | Raspor, Biserka
The present field study, conducted during the spawning period (April/May) of European chub (Squalius cephalus L.) from the Sava River in Croatia, indicates that seasonal changes of fish physiological state might cause variability in gastrointestinal metal (Cd, Cu, Fe, Mn and Zn), total cytosolic protein and metallothionein (MT) levels. During the period of fish spawning and increased metabolic activity, a significant relationship with chub hepatosomatic index was evident for Fe and Mn in gastrointestinal tissue (r = 0.35 and 0.26, respectively) and in cytosolic fraction (r = 0.32 and 0.41, respectively) and for Zn and Fe in the gut content (r = 0.36 and 0.31, respectively). Total cytosolic protein and MT concentrations followed the same spatial distribution as Fe and Mn in all gastrointestinal fractions and as Zn in the sub-cellular fractions, with higher levels at upstream locations. Due to the role of essential metals in metabolic processes and gonad development, increased feeding and spawning activity in April/May resulted in higher gastrointestinal essential metal (Fe, Mn and Zn) and MT concentrations, which probably follow an increase in Zn concentrations, known as the primary MT inducer. Therefore, biotic factors should be considered as important confounding factors in metal exposure assessment, while their influence on gastrointestinal metal and protein levels should be interpreted depending on the season studied.
显示更多 [+] 显示较少 [-]Isotherm studies for the determination of Cd (II) ions removal capacity in living biomass of a microalga with high tolerance to cadmium toxicity
2014
Torres, Enrique | Mera, Roi | Herrero, Concepción | Abalde Alonso, Julio
The biosorption characteristics of Cd (II) ions using the living biomass of the marine diatom Phaeodactylum tricornutum were investigated. This microalga is a highly tolerant species to cadmium toxicity; for this reason, it is interesting to know its potential for use in the removal of this metal. The use of living biomass offers better possibilities than that of dead biomass since cadmium can also be bioaccumulated inside the cells. For this purpose, tolerant species are necessary. P. tricornutum is within this category with an EC₅₀,₉₆ₕof 19.1 ± 3.5 mg Cd (II)/L, and in the present manuscript, it is demonstrated that this microalga has a very good potential for bioremediation of Cd (II) ions in saline habitats. Cadmium removed by the cells was divided into three fractions: total, intracellular and bioadsorbed. The experiments were conducted for 96 h in natural seawater with a concentration range of 1–100 mg Cd (II)/L. Each fraction was characterized every 24 h by sorption isotherms. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin equations. The biosorption was well described by Langmuir isotherm followed by Freundlich. The worst model was Temkin. The biosorption capacity of this microalga for Cd (II) ions was found to be 67.1 ± 3.2 mg/g after 96 h with approximately 40 % of this capacity in the intracellular fraction. The bioconcentration factor determined was 2,204.7 after 96 h and with an initial Cd (II) concentration of 1 mg/L.
显示更多 [+] 显示较少 [-]Origin of middle rare earth element enrichment in acid mine drainage-impacted areas
2014
Grawunder, Anja | Merten, Dirk | Büchel, Georg
The commonly observed enrichment of middle rare earth elements (MREE) in water sampled in acid mine drainage (AMD)-impacted areas was found to be the result of preferential release from the widespread mineral pyrite (FeS₂). Three different mining-impacted sites in Europe were sampled for water, and various pyrite samples were used in batch experiments with diluted sulphuric acid simulating AMD-impacted water with high sulphate concentration and high acidity. All water samples independent on their origin from groundwater, creek water or lake water as well as on the surrounding rock types showed MREE enrichment. Also the pyrite samples showed MREE enrichment in the respective acidic leachate but not always in their total contents indicating a process-controlled release. It is discussed that most probably complexation to sulphite (SO₃ ²⁻) or another intermediate S-species during pyrite oxidation is the reason for the MREE enrichment in the normalized REE patterns.
显示更多 [+] 显示较少 [-]