细化搜索
结果 1501-1510 的 6,473
Microplastics in aquatic environments: Toxicity to trigger ecological consequences
2020
Ma, Hui | Pu, Shengyan | Liu, Shibin | Bai, Yingchen | Mandal, Sandip | Xing, Baoshan
The prevalence of microplastic debris in aquatic ecosystems as a result of anthropogenic activity has received worldwide attention. Although extensive research has reported ubiquitous and directly adverse effects on organisms, only a few published studies have proposed the long-term ecological consequences. The research in this field still lacks a systematic overview of the toxic effects of microplastics and a coherent understanding of the potential ecological consequences. Here, we draw upon cross-disciplinary scientific research from recent decades to 1) seek to understand the correlation between the responses of organisms to microplastics and the potential ecological disturbances, 2) summarize the potential ecological consequences triggered by microplastics in aquatic environments, and 3) discuss the barriers to the understanding of microplastic toxicology. In this paper, the physiochemical characteristics and dynamic distribution of microplastics were related to the toxicological concerns about microplastic bioavailability and environmental perturbation. The extent of the ecological disturbances depends on how the ecotoxicity of microplastics is transferred and proliferated throughout an aquatic environment. Microplastics are prevalent; they interfere with nutrient productivity and cycling, cause physiological stress in organisms (e.g., behavioral alterations, immune responses, abnormal metabolism, and changes to energy budgets), and threaten the ecosystem composition and stability. By integrating the linkages among the toxicities that range from the erosion of individual species to the defective development of biological communities to the collapse of the ecosystem functioning, this review provides a bottom-up framework for future research to address the mechanisms underlying the toxicity of microplastics in aquatic environments and the substantial ecological consequences.
显示更多 [+] 显示较少 [-]Impacts of morphological-controlled ZnO nanoarchitectures on aerobic microbial communities during real wastewater treatment in an aerobic-photocatalytic system
2020
Chang, Jang Sen | Chong, Meng Nan | Poh, Phaik Eong | Ocon, Joey D. | Md Zoqratt, Muhammad Zarul Hanifah | Lee, Sze Mei
This study aimed to evaluate the impacts of morphological-controlled ZnO nanoarchitectures on aerobic microbial communities during real wastewater treatment in an aerobic-photocatalytic system. Results showed that the antibacterial properties of ZnO nanoarchitectures were significantly more overwhelming than their photocatalytic properties. The inhibition of microbial activities in activated sludge by ZnO nanoarchitectures entailed an adverse effect on wastewater treatment efficiency. Subsequently, the 16S sequencing analysis were conducted to examine the impacts of ZnO nanoarchitectures on aerobic microbial communities, and found the significantly lower microbial diversity and species richness in activated sludge treated with 1D-ZnO nanorods as compared to other ZnO nanoarchitectures. Additionally, 1D-ZnO nanorods reduced the highest proportion of Proteobacteria phylum in activated sludge due to its higher proportion of active polar surfaces that facilitates Zn²⁺ ions dissolution. Pearson correlation coefficients showed that the experimental data obtained from COD removal efficiency and bacterial log reduction were statistically significant (p-value < 0.05), and presented a positive correlation with the concentration of Zn²⁺ ions. Finally, a non-parametric analysis of Friedman test and post-hoc analysis confirmed that the concentration of Zn²⁺ ions being released from ZnO nanoarchitectures is the main contributing factor for both the reduction in COD removal efficiency and bacterial log reduction.
显示更多 [+] 显示较少 [-]Microplastic ingestion rates are phenotype-dependent in juvenile anemonefish
2020
Nanninga, Gerrit B. | Scott, Anna | Manica, Andrea
The potential influence of microplastic debris on marine organisms is an issue of great ecological and socioeconomic concern. Experiments exposing fishes and invertebrates to constant concentrations of microplastics often yield high variation in particle ingestion rates among individuals. Yet, despite an increasing interest in microplastic ingestion in the wild, the potential intrinsic drivers of inter-individual variation have received little attention so far. Here we assessed individual-level ingestion of Polyethylene microspheres by laboratory-reared juvenile anemonefish, Amphiprion ocellaris, in relation to (a) ambient particle concentrations and (b) repeatable behavioural traits. We show that microplastic ingestion is highly variable at all tested particle concentrations and that this variation can partially be explained by individual activity levels. Moreover, the relationship between ingestion and behavioural variation increased notably when only the most behaviourally consistent individuals (n = 40 out of 60) were considered in the analysis. Our findings indicate that microplastic ingestion rates in juvenile reef fishes may be less dependent on ambient concentrations than expected; instead they are to some degree phenotype-dependent. Care should thus be taken when reporting mean responses to microplastic exposure treatments, because some individuals may not be affected in the same way as others due to differential ingestion behaviour. We also discuss potential ramifications of non-random ingestion variability on population- and community-level responses.
显示更多 [+] 显示较少 [-]Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey
2020
Varol, Memet
The Keban Dam Reservoir, located on the Euphrates River, is the second largest reservoir of Turkey. Water quality of this reservoir is of great importance because it is widely used for recreation, aquaculture production, fishing, and irrigation. In this study, discriminant analysis, principal component analysis (PCA), factor analysis (FA) and cluster analysis (CA) were conducted to evaluate the seasonal and spatial variations in surface water quality of the reservoir. Also, total phosphorus (TP) content in sediments, water type and trophic status of the reservoir were determined. For this, 19 water quality variables and TP in sediments were monitored seasonally at 11 sampling stations on the reservoir during one year. Hierarchical CA classified 11 stations into three groups, i.e., upstream (moderate polluted), midstream (low polluted) and downstream (clean) regions. PCA/FA allowed to group the variables responsible for variations in water quality, which are mainly related to mineral dissolution (natural), organic matter and nutrients (anthropogenic), and physical parameters (natural). Discriminant analysis (DA) gave better results for both data reduction and spatio-temporal analysis. Stepwise temporal DA identified eight variables: water temperature (WT), chemical oxygen demand (COD), nitrate nitrogen (NO₃–N), soluble reactive phosphorus (SRP), chlorophyll-a (Chl-a), potassium (K⁺), magnesium (Mg²⁺), and calcium (Ca²⁺), which are the most significant variables responsible for temporal variations in water quality of the reservoir, while stepwise spatial DA identified three variables: K⁺, chloride (Cl⁻), and sulphate (SO₄⁻²), which are the most significant variables responsible for spatial variations. According to Ontario sediment-quality guidelines, sediments of the reservoir can be considered as unpolluted in terms of mean TP content. The water type of the reservoir was calcium-bicarbonate. According to trophic state index values based on TP and Chl-a, upstream region (moderate polluted) of the reservoir was in the eutrophic status, whereas other regions were in the mesotrophic status.
显示更多 [+] 显示较少 [-]Speciation of antimony in representative sulfidic hot springs in the YST Geothermal Province (China) and its immobilization by spring sediments
2020
Guo, Qinghai | Planer-Friedrich, Britta | Luo, Li | Liu, Mingliang | Wu, Geng | Li, Yumei | Zhao, Qian
As a well-known toxic element, antimony occurred in a wide range of concentrations in the geothermal waters discharging from Rehai and Daggyai, two representative hydrothermal areas in the Yunnan-Sichuan-Tibet Geothermal Province of China. Antimony speciation in different types of the hot springs in Rehai and Daggyai varied greatly as well, and tri- and tetrathioantimonate were detected in most neutral to alkaline Rehai hot springs. Neutral to alkaline pH, high sulfide concentrations, and high sulfide to antimony ratios were the critical factors promoting the formation of thioantimonates. The fact that no thioantimonates were detected in neutral to alkaline Daggyai hot springs is attributed to high concentrations of coexistent arsenic capable of inhibiting the thiolation of oxyantimony anions, because thioantimonates are kinetically more labile than thioarsenates. Upon discharge of the hot springs, both total aqueous antimony and arsenic decreased rapidly and substantially via immobilization to the sediments in the spring vents and their outflow channels. Some of the common iron-bearing minerals in the spring sediments, like pyrite and goethite, are known sinks for antimony and arsenic. Yet, an interesting difference was observed with antimony and iron contents in the sediment samples showing a significant correlation that was lacking for arsenic and iron contents. The explanation might be that for arsenic, sorption affinities are known to vary significantly with aqueous arsenic speciation and mineral phases. Typically, thiolation increases, and oxidation decreases arsenic mobility. Sorption experiments for antimony conducted in the present study, in contrast, showed that different antimony species were comparably sorbed to pyrite over a wide range of initial antimony concentrations and to goethite at relatively low initial antimony concentrations (but still covering the concentration range of antimony in common natural waters), so neither thiolation nor oxidation contributed significantly to the mobility of antimony in the hot springs investigated in this study.
显示更多 [+] 显示较少 [-]Environmental forensics of complexly contaminated sites: A complimentary fingerprinting approach
2020
Kruge, Michael A. | Lara-Gonzalo, Azucena | Gallego, José Luis R.
The environmental forensics approach is most often applied in petroleum and fuel spill incidents, for which sophisticated chemical fingerprinting procedures have evolved. In cases in which pollutant discharges occur in settings with prior contamination, more care must be taken in source discrimination, requiring further advances in methodology. Additional obstacles can arise if the spill is an atypical industrial discharge. This would necessitate painstaking characterization of unfamiliar substances lying outside of existing regulatory regimes and thus overlooked by mandated analytical protocols (i.e., contaminants of emerging concern). Towards these ends, this paper presents a systematic, multi-faceted GC-MS approach using the saturated, aromatic, and resin fractions of contaminated soil extracts, alongside soil thermal desorption and analytical pyrolysis of the soil and its asphaltene fraction. This complimentary “extract + thermal” approach is applied to a typical fuel oil spill, sediments of a severely-impacted urban river, and brownfield soils from coke, petrochemical, and Hg-As pyrometallurgical plants. The insights thus attained can serve to better inform brownfield remediation planning in the public interest.
显示更多 [+] 显示较少 [-]Dibutyl phthalate induces allergic airway inflammation in rats via inhibition of the Nrf2/TSLP/JAK1 pathway
2020
Wang, Xiaoqiao | Han, Bing | Wu, Pengfei | Li, Siyu | Lv, Yueying | Lu, Jingjing | Yang, Qingyue | Li, Jiayi | Zhu, Yan | Zhang, Zhigang
Dibutyl phthalate (DBP), an important plastic contaminant in the environment, is known to cause organ toxicity. Although current research has shown that DBP-induced organ toxicity is associated with oxidative stress, the toxic effect of DBP on the lungs have not been fully elucidated. Therefore, we investigated the potential mechanism by which DBP induces pulmonary toxicity using a model of DBP-induced allergic airway inflammation in rats. The results showed that chronic exposure to DBP induced histopathological damage, inflammation, oxidative stress, apoptosis, and increased the protein levels of thymic stromal lymphopoietin (TSLP) and its downstream protein Janus kinase 1 (JAK1) and signal transducer and activator of transcription 6 (STAT6). Moreover, DBP exposure inhibited nuclear factor-erythroid-2-related factor 2 (Nrf2) and levels of its target genes NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1). Additionally, using in vitro experiments, we found that DBP induced oxidative stress, reduced cell viability, and inhibited the Nrf2/HO-1/NQO1 pathway in mouse alveolar type II epithelial cell line. Overall, these data demonstrate that DBP induces allergic airway inflammation in rats via inhibition of the Nrf2/TSLP/JAK1 pathway.
显示更多 [+] 显示较少 [-]The effect of latitude and PM2.5 on spreading of SARS-CoV-2 in tropical and temperate zone countries
2020
Chennakesavulu, K. | Reddy, G Ramanjaneya
The present work describes spreading of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) at the tropical and temperate zones which are explained based on insolation energy, Particulate Matter (PM₂.₅), latitude, temperature, humidity, Population Density (PD), Human Development Index (HDI) and Global Health Security Index (GHSI) parameters. In order to analyze the spreading of SARS-CoV-2 by statistical data based on the confirmed positive cases which are collected between December 31, 2019 to April 25, 2020. The present analysis reveals that the outbreak of SARS-CoV-2 in the major countries lie on the Equator is 78,509 cases, the countries lie on the Tropic of Cancer is 62,930 cases (excluding China) and the countries lie on the Tropic of Capricorn is 22,842 cases. The tropical countries, which comes between the Tropic of Cancer and Tropic of Capricorn is reported to be 1,77,877 cases. The temperate zone countries, which are above and below the tropical countries are reported to be 25,66,171 cases so, the pandemic analysis describes the correlation between latitude, temperate zones, PM₂.₅ and local environmental factors. Hence, the temperature plays a pivotal role in the spreading of coronavirus at below 20 °C. The spreading of SARS-CoV-2 cases in Northern and Southern Hemispheres has inverse order against absorption of insolated energy. In temperate zone countries, the concentration of PM₂.₅ at below 20 μg/m³ has higher spreading rate of SARS-CoV-2 cases. The effect of insolation energy and PM₂.₅, it is confirmed that the spreading of SARS-CoV-2 is explained by dumb-bell model and solid/liquid interface formation mechanism. The present meta-analysis also focuses on the impact of GHSI, HDI, PD and PM₂.₅ on spreading of SARS-CoV-2 cases.
显示更多 [+] 显示较少 [-]Effect of sulfamethazine on surface characteristics of biochar colloids and its implications for transport in porous media
2020
Yang, Wen | Feng, Tongtong | Flury, Markus | Li, Baoguo | Shang, Jianying
Antibiotics are contaminants of emerging concern due to their potential effect on antibiotic resistance and human health. Antibiotics tend to sorb strongly to organic materials, and biochar, a high efficient agent for adsorbing and immobilizing pollutants, can thus be used for remediation of antibiotic-contaminated soil and water. The effect of ionizable antibiotics on surface characteristics and transport of biochar colloids (BC) in the environment is poorly studied. Column experiments of BC were conducted in 1 mM NaCl solution under three pH (5, 7, and 10) conditions in the presence of sulfamethazine (SMT). Additionally, the adsorption of SMT by BC and the zeta potential of BC were also studied. The experimental results showed that SMT sorption to BC was enhanced at pH 5 and 7, but reduced at pH 10. SMT sorption reduced the surface charge of BC at pH 5 and 7 due to charge shielding, but increased surface charge at pH 10 due to adsorption of the negatively charged SMT species. The mobility of BC was inhibited by SMT under acidic or neutral conditions, while enhanced by SMT under alkaline conditions, which can be well explained by the change of electrostatic repulsion between BC and sand grains. These findings imply that pH conditions played a crucial role in deciding whether the transport of BC would be promoted by SMT or not. Biochar for antibiotics remediation will be more effective under acidic and neutral soil conditions, and the mobility of BC will be less than in alkaline soils.
显示更多 [+] 显示较少 [-]Surface ozone response to satellite-constrained NOx emission adjustments and its implications
2020
Bae, Changhan | Kim, Hyun Cheol | Kim, Byeong-Uk | Kim, Soontae
Both surface and satellite observations have shown a decrease in NOₓ emissions in East Asian countries in recent years. In order to reflect the recent NOx emission reduction and to investigate its impact on surface O₃ concentrations in Asian megacities, we adjusted two bottom-up regional emission inventories of which base years are 2006 (E2006) and 2010 (E2010), respectively. We applied direct and relative emission adjustments to both E2006 and E2010 to constrain NOx emissions using OMI NO₂ vertical column densities. Except for the relative emission adjustment with E2006, modeling results with adjusted emissions exhibit that NOx emissions over East Asian megacities (Beijing, Shanghai, Seoul, and Tokyo) in the bottom-up inventories are generally overestimated. When the direct emission adjustment is applied to E2006, model biases in the Seoul Metropolitan Area (SMA), South Korea are reduced from 24 ppb to 2 ppb for NOx (=NO+NO₂) and from −9 ppb to 0 ppb for O₃. In addition, NO₂ model biases in Beijing and Shanghai in China are reduced from 8 ppb to 18 ppb–0 ppb and 1 ppb, respectively. Daily maximum 8-h average O₃ model biases over the same places are decreased by 8 ppb and 14 ppb. Further analyses suggest that the reduction in domestic South Korean NOₓ emissions plays a significant role in increasing O₃ concentrations in SMA. We conclude that the current strong drive to reduce NOₓ emissions as part of the strategy to lower particulate matter concentrations in South Korea can account for increased O₃ concentrations in recent years and suggest that more aggressive NOₓ emissions will be necessary soon.
显示更多 [+] 显示较少 [-]