细化搜索
结果 1501-1510 的 7,921
Differential lead-fluoride and nickel-fluoride uptake in co-polluted soil variably affects the overall physiome in an aromatic rice cultivar
2021
The present study aimed to show that nickel and fluoride exhibited synchronized co-inhibited uptake in the aromatic rice cultivar, Gobindobhog, since bioaccumulation of the two elements was lower than that during individual stress, so that overall growth under combined stress was similar to control seedlings. On the contrary, lead and fluoride stimulated their co-uptake which triggered oxidative damages, NADPH oxidase activity, methylglyoxal accumulation, photosynthetic inhibition, membrane-protein damages, necrosis and genomic template degradation. Accumulation of proline, anthocyanins, non-protein thiols and phytochelatins was stimulated for systemic protection against reactive oxygen species (ROS) and xenobiotic-mediated injuries during lead-fluoride toxicity. ROS accumulation during nickel-fluoride stress was insignificant due to which enhanced accumulation of most antioxidants was not required. Glutathione depletion during combined lead-fluoride toxicity was due to its utilization in the glyoxalase cycle and also inhibition of glutathione reductase. However, the nickel-fluoride-treated sets maintained glutathione reserves and glyoxalase activity similar to those in control. Presence of fluoride ‘safeguarded’ the glutathione-utilizing enzymes like glutathione reductase, glutathione peroxidase and glutathione-S-transferase during dual lead-fluoride stress. This was because these enzymes showed higher activity compared to that under lead toxicity alone. Enzymatic antioxidants like superoxide dismutase, ascorbate peroxidase and guaiacol peroxidase were activated during lead-fluoride toxicity due to altered iron and copper homeostasis. Catalase activity was strongly inhibited, resulting in the inability to scavenge H₂O₂ and suppression of the fluoride-adaptable phenotype. However, none of the enzymatic antioxidants were inhibited during nickel-fluoride stress, which cumulatively allowed the seedlings to maintain normal physiology. Overall our findings holistically reveal the physiological plasticity of Gobindobhog in response to two different heavy metals under the influence of fluoride.
显示更多 [+] 显示较少 [-]Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas
2021
The effectiveness of biochar as a sorptive material to remove contaminants, particularly heavy metals, from water is dependent on biomass type and pyrolysis condition. Biochars were produced from pulp mill sludge (PMS) and rice straw (RS) with nitrogen (N₂) or carbon dioxide (CO₂) as the purging gas. The sorptive capacity of the biochars for cadmium(II), copper(II), nickel(II) and lead(II) was studied. The heavy metal adsorption capacity was mainly affected by biomass type, with biochars adsorption capacities higher for lead(II) (109.9–256.4 mg g⁻¹) than for nickel(II) (40.2–64.1 mg g⁻¹), cadmium(II) (29.5–42.7 mg g⁻¹) and copper(II) (18.5–39.4 mg g⁻¹) based on the Langmuir adsorption model. The highest lead(II) adsorption capacities for PMS and RS biochars were 256.4 and 133.3 mg g⁻¹, respectively, when generated using N₂ as the purging gas. The corresponding lead(II) adsorption capacities were 250.0 and 109.9 mg g⁻¹, respectively, when generated using CO₂ as the purging gas. According to the intraparticle diffusion model, 30–62% of heavy metal adsorption was achieved in 1 h; film diffusion was the rate-dominating step, whereas pore diffusion was a rate-limiting step. Ion exchange and complexation between heavy metals and biochar surface functional groups such as carbonyl and hydroxyl groups were effective mechanisms for heavy metal sorption from the aqueous solution. We conclude that proper selection of both the feedstock type and the purging gas is important in designing biochars for the effective removal of potentially toxic metals from wastewater.
显示更多 [+] 显示较少 [-]Methane control of cadmium tolerance in alfalfa roots requires hydrogen sulfide
2021
Hydrogen sulfide (H₂S) is well known as a gaseous signal in response to heavy metal stress, while methane (CH₄), the most prevalent greenhouse gas, confers cadmium (Cd) tolerance. In this report, the causal link between CH₄ and H₂S controlling Cd tolerance in alfalfa (Medicago sativa) plants was assessed. Our results observed that the administration of CH₄ not only intensifies H₂S metabolism, but also attenuates Cd-triggered growth inhibition in alfalfa seedlings, which were parallel to the alleviated roles in the redox imbalance and cell death in root tissues. Above results were not observed in roots after the removal of endogenous H₂S, either in the presence of either hypotaurine (HT; a H₂S scavenger) or DL-propargylglycine (PAG; a H₂S biosynthesis inhibitor). Using in situ noninvasive microtest technology (NMT) and inductively coupled plasma mass spectroscopy (ICP-MS), subsequent results confirmed the participation of H₂S in CH₄-inhibited Cd influx and accumulation in roots, which could be explained by reestablishing glutathione (GSH) pool (reduced/oxidized GSH and homoglutathione) homeostasis and promoting antioxidant defence. Overall, our results clearly revealed that H₂S operates downstream of CH₄ enhancing tolerance against Cd stress, which are significant for both fundamental and applied plant biology.
显示更多 [+] 显示较少 [-]Assessing natural recovery from contaminants in a river using sediment chemistry and toxicity from different depth ranges
2021
To determine whether natural recovery was occurring in a depositional area of the St. Marys River (Ontario, Canada) known as East Bellevue Marine Park (EBMP), sediment was collected from two depth ranges, 0–5 cm and 0–10 cm, and subjected to a series of laboratory toxicity tests and chemical analysis. Toxicological responses (survival, growth, reproduction, development) of four benthic invertebrates and the fathead minnow were compared at test vs. reference sites using univariate and multivariate (ordination) techniques. Temporal trends in sediment chemistry and invertebrate toxicity were examined with time series data from 2008 through to 2018. Polycyclic aromatic hydrocarbons (PAHs; ≤ 37 mg/kg) and petroleum hydrocarbons (PHCs; ≤ 6266 mg/kg) were elevated in EBMP compared to reference sites (PAHs, ≤ 1.6 mg/kg; PHCs ≤ 180 mg/kg). Comparatively, the 0–5 cm sediment layer had lower concentrations of all contaminants than the 0–10 cm layer at three of four test sites. Over time, contaminant concentrations have mostly remained stable or have decreased. There were no significant differences in survival, growth, or development of the larval fish in EBMP compared to the upstream reference sites, and no differences between sampling depths. However, most EBMP sediments were toxic to invertebrates, driven by reduced reproduction by the worm Tubifex and reduced survival by the amphipod Hyalella. Among habitat variables, a combination of different classes of compounds based on ordination scores (PHCs, oil and grease, metals) was most strongly correlated to toxicological response. There was little to no difference in toxicity between sampling depths based on integrated endpoint response; however, individual endpoints showed mostly greater toxicity from exposure to the 0–10 cm layer. Over time, toxicity has mostly remained stable or showed improvement. These results provided some positive indications that gradual natural recovery is occurring in EBMP.
显示更多 [+] 显示较少 [-]Restored riverine wetlands in a headwater stream can simultaneously behave as sinks of N2O and hotspots of CH4 production
2021
Zhang, Wangshou | Li, Hengpeng | Pueppke, Steven G. | Pang, Jiaping
Wetlands can improve water quality, but they are also recognized as important sources of greenhouse gases (GHG) such as nitrous oxide (N₂O) and methane (CH₄). Emissions of these gases from wetland ecosystems, especially those in headwaters, are poorly understood. Here, we determined monthly concentrations of dissolved N₂O and CH₄ in a headwater stream of the Taihu Lake basin of China that contains both wetland and non-wetland reaches. Daily GHG dynamics in the wetland reach were also investigated. Riverine N₂O and CH₄ concentrations generally varied within 10–30 nmol L⁻¹ and 0.1–1.5 μmol L⁻¹, respectively. CH₄ saturation levels in the wetland reach were about seven times higher than those in the non-wetland reach, but there was no difference in N₂O saturation. In the wetland reach, saturation levels of CH₄ peaked in July, coincident with a dip in N₂O saturation to levels below its saturated solubility. This underscores that hotspots of CH₄ production and sinks for N₂O can occur occasionally in wetlands in mid-summer, when vegetative growth and microbial activities are high. Diurnal measurements indicated that CH₄ saturation in water flows passing through the wetlands from midnight through the early morning can surge to levels 10 times higher than those detected at other times of the day. Simultaneously, saturation levels of N₂O decreased by 75%, indicating a net consumption of N₂O. Changes in nutrient supply determined by upstream inflows, as well as dissolved oxygen, pH, and other environmental factors mediated by the wetlands, correlate with the differentiated behavior of N₂O and CH₄ production in wetlands. Additional work will be necessary to confirm the roles of these factors in regulating GHG emissions in riverine wetlands.
显示更多 [+] 显示较少 [-]Impacts of oxalic acid-activated phosphate rock and root-induced changes on Pb bioavailability in the rhizosphere and its distribution in mung bean plant
2021
Rasool, Bilal | ur-Rahman, Mahmood | Adnan Ramzani, Pia Muhammad | Zubair, Muhammad | Khan, Muhammad Asaf | Lewińska, Karolina | Turan, Veysel | Karczewska, Anna | Khan, Shahbaz Ali | Farhad, Muniba | Tauqeer, Hafiz Muhammad | Iqbal, Muhammad
Rhizosphere acidification in leguminous plants can release P from the dissolution of phosphate compounds which can reduce Pb bioavailability to them via the formation of insoluble Pb compounds in their rhizosphere. A soil polluted from Pb-acid batteries effluent (SPBE), having total Pb = 639 mg kg⁻¹, was amended with six different rates (0, 0.5, 1, 2, 4 and 6%) of oxalic acid-activated phosphate rock (OAPR) and their effects on pH, available P and bioavailable Pb concentrations in the rhizosphere and bulk soils of mung bean plant were evaluated. Furthermore, the effects of these variant OAPR rates on Pb concentrations in plant parts, bioaccumulation factor (BAF) and translocation factor (TF) for Pb in grain and traits like productivity, the activities of antioxidant enzymes, and grain biochemistry were investigated. Results revealed that increasing rates of OAPR significantly increased pH values and available P while decreased bioavailable Pb concentrations in the rhizosphere over control. The highest dissolution of P in the rhizosphere was with 4 and 6% OAPR rates. As a result, the formation of insoluble Pb compounds affected on reduced Pb concentrations in shoots, roots, and grain in addition to lower grain BAF and TF values for Pb over control. Likewise, the highest plant productivity, improved grain biochemistry, high Ca and Mg concentrations, least oxidative stress, and enhanced soil alkaline phosphatase activity were found with 4 and 6% OAPR rates. The OAPR 4% rate is suggested for reducing grain Pb concentration, cell oxidative injury, and improving grain biochemistry in mung bean.
显示更多 [+] 显示较少 [-]Decreases in arsenic accumulation by the plasma membrane intrinsic protein PIP2;2 in Arabidopsis and yeast
2021
Modareszadeh, Mahsa | Bahmani, Ramin | Kim, DongGwan | Hwang, Seongbin
Arsenic (As) is a toxic pollutant that mainly enters the human body via plants. Therefore, understanding the strategy for reducing arsenic accumulation in plants is important to human health and the environment. Aquaporins are ubiquitous water channel proteins that bidirectionally transport water across cell membranes and play a role in the transportation of other molecules, such as glycerol, ammonia, boric acid, and arsenic acid. Previously, we observed that Arabidopsis PIP2;2, encoding a plasma membrane intrinsic protein, is highly expressed in NtCyc07-expressing Arabidopsis, which shows a higher tolerance to arsenite (As(III)). In this study, we report that the overexpression of AtPIP2;2 enhanced As(III) tolerance and reduced As(III) levels in yeast. Likewise, AtPIP2;2-overexpressing Arabidopsis exhibited improved As(III) tolerance and lower accumulation of As(III). In contrast, atpip2;2 knockout Arabidopsis showed reduced As(III) tolerance but no significant change in As(III) levels. Interestingly, the AtPIP2;2 transcript and protein levels were increased in roots and shoots of Arabidopsis in response to As(III). Furthermore, As(III) efflux was enhanced and As(III) influx/accumulation was reduced in AtPIP2;2-expressing plants. The expression of AtPIP2;2 rescued the As(III)-sensitive phenotype of acr3 mutant yeast by reducing As levels and slightly reduced the As(III)-tolerant phenotype of fps1 mutant yeast by enhancing As content, suggesting that AtPIP2; 2 functions as a bidirectional channel of As(III), while the As(III) exporter activity is higher than the As(III) importer activity. All these results indicate that AtPIP2;2 expression promotes As(III) tolerance by decreasing As(III) accumulation through enhancing As(III) efflux in Arabidopsis. This finding can be applied to the generation of low arsenic crops for human health.
显示更多 [+] 显示较少 [-]Citric acid-assisted phytoextraction of trace elements in composted municipal sludge by garden plants
2021
Leng, Yaling | Lu, Minying | Li, Feili | Yang, Boxuan | Hu, Zhong-Ting
Sludge landscaping after compost stabilization is a popular recycling process; however, until trace elements (TEs) are extracted by plants and reduced to safe concentrations, they present a potential exposure risk. Three garden plants, Liriope platyphylla Wang et Tang (L. platyphylla), Iris tectorum Maxim (I. tectorum), and Photinia x fraseri Dress (P. x fraseri), were selected for field experiments, and their ability to phytoremediate TEs and the promotion effect of citric acid (CA) were studied over 3 months of observation. Among the three kinds of plants, L. platyphylla had the highest biomass per unit soil area, and the CA treatment further increased the biomass of this plant per unit soil area as well as the uptake of TEs. When treated with 3 mmol kg⁻¹ CA, L. platyphylla showed increases in the bioconcentration factors of Cu, Zn, Pb, and Cd by 24%, 63%, 27%, and 123%, respectively. Because of the large biomass and high concentrations of TEs, L. platyphylla had high phytoremediation indexes for Zn, Cu, Pb, Ni, and Cd, which reached 18.5, 3.7, 3.2, 2.2, and 0.4 mg m⁻², respectively, and were further improved by 60%–187% by the CA treatment. These advantages indicate the potential usefulness of L. platyphylla for phytoremediation. The results provide basic data and technical support for the use of sludge-based compost and phytoremediation by garden plants.
显示更多 [+] 显示较少 [-]Removal of sulfamethoxazole and tetracycline in constructed wetlands integrated with microbial fuel cells influenced by influent and operational conditions
2021
Wen, Huiyang | Zhu, Hui | Xu, Yingying | Yan, Baixing | Shutes, B. (Brian) | Bañuelos, Gary | Wang, Xinyi
Constructed wetlands integrated with microbial fuel cells (MFC-CWs) have been recently developed and tested for removing antibiotics. However, the effects of carbon source availability, electron transfer flux and cathode conditions on antibiotics removal in MFC-CWs through co-metabolism remained unclear. In this study, four experiments were conducted in MFC-CW microcosms to investigate the influence of carbon source species and concentrations, external resistance and aeration duration on sulfamethoxazole (SMX) and tetracycline (TC) removal and bioelectricity generation performance. MFC-CWs supplied with glucose as carbon source outperformed other carbon sources, and moderate influent glucose concentration (200 mg L⁻¹) resulted in the best removal of both SMX and TC. Highest removal percentages of SMX (99.4%) and TC (97.8%) were obtained in MFC-CWs with the external resistance of 700 Ω compared to other external resistance treatments. SMX and TC removal percentages in MFC-CWs were improved by 4.98% and 4.34%, respectively, by increasing the aeration duration to 12 h compared to no aeration. For bioelectricity generation performance, glucose outperformed sodium acetate, sucrose and starch, with the highest voltages of 386 ± 20 mV, maximum power density (MPD) of 123.43 mW m⁻³, and coulombic efficiency (CE) of 0.273%. Increasing carbon source concentrations from 100 to 400 mg L⁻¹, significantly (p < 0.05) increased the voltage and MPD, but decreased the internal resistance and CE. The highest MPD was obtained when the external resistance (700 Ω) was close to the internal resistance (600.11 Ω). Aeration not only improved the voltage and MPD, but also reduced the internal resistance. This study demonstrates that carbon source species and concentrations, external resistances and aeration duration, all play vital roles in regulating SMX and TC removal in MFC-CWs.
显示更多 [+] 显示较少 [-]Ecotoxicological assessment of sewage sludge-derived biochars-amended soil
2021
Tomczyk, Beata | Siatecka, Anna | Bogusz, Aleksandra | Oleszczuk, Patryk
The study aimed to evaluate the ecotoxicity of soil (S) amended with biochars (BCKN) produced by the thermal conversion of sewage sludge (SSL) at temperatures of 500 °C, 600 °C, or 700 °C and SSL itself. The ecotoxicological tests were carried out on organisms representing various trophic levels (Lepidium sativum in plant, Folsomia candida in invertebrates, and Aliivibrio fischeri in bacteria). Moreover, the study evaluated the effects of three plants (Lolium perenne, Trifolium repens, and Arabidopsis thaliana) growing on BCKN700-amended soil on its ecotoxicological properties. The experiment was carried out for six months. In most tests, the conversion of sewage sludge into biochar caused a significant decrease in toxicity by adding it to the soil. The pyrolysis temperature directly determined this effect. The soil amended with the biochars produced at higher temperatures (600 °C and 700 °C) generally exhibited lower toxicity to the test organisms than the SSL. Because of aging, all the biochars lost their inhibition properties against the tested organisms in the solid-phase tests and had a stimulating influence on the reproductive ability of F. candida. With time, the fertilizing effect of the BCKN700 amended soil also increased. The aged biochars also did not have an inhibitory effect on A. fischeri luminescence in the leachate tests. The study has also demonstrated that the cultivation of an appropriate plant species may additionally reduce the toxicity of soil fertilized with biochar. The obtained results show that the conversion of sewage sludge to biochar carried out at an appropriate temperature can become a useful method in reducing the toxicity of the waste and while being safe for agricultural purposes.
显示更多 [+] 显示较少 [-]