细化搜索
结果 1531-1540 的 3,207
Fate and Risk Assessment of Arsenic Compounds in Soil Amended with Poultry Litter Under Aerobic and Anaerobic Circumstances 全文
2015
Xie, Haiyun | Han, Deming | Cheng Jinping, | Zhou, Pei | Wang, Wenhua
Poultry litter and bedding materials generated from laying chicken farm often contain high levels of arsenic when roxarsone is included in feed to combat disease and improve egg production. This study was conducted to determine the fate and ecological risk of arsenic species in poultry litter which applied to agricultural field. Three poultry litter application rates (0, 10, 60 % dry weight) were used to amend soil samples under anaerobic and aerobic circumstances, respectively, incubated at 30 % moisture content for 110 days. Experiment indicated that under anaerobic circumstance, As(V) and As(III) decreased in treatments applied 60 and 10 % rates within initial 7 days, subsequently methylated arsenic displayed increasing, suggesting biotic activity transformed inorganoarsenical to methylated arsenic species. In contrast, As(V) dropped in the first 7 days but increased thereafter under aerobic circumstances, with methylated arsenic increasing, implying abiotc and biotic activities enhanced arsenic speciation. Based on different arsenic species, we evaluated their ecological risk in poultry litter respectively. It was found that ecological risks under anaerobic circumstance were higher than under aerobic circumstance of the same poultry litter rates, and higher poultry litter rates applied to soil would bring about higher ecological risk. We suggest that poultry litter should be disposed at low rate (approximately 10 %) and applied to soil surface to create aerobic circumstance for the initial 2 months time, but should be buried into a deeper depth thereafter.
显示更多 [+] 显示较少 [-]Impact of Alkyl Polyglucosides Surfactant Lutensol GD 70 on Modification of Bacterial Cell Surface Properties 全文
2015
Smułek, Wojciech | Kaczorek, Ewa | Zgoła-Grześkowiak, Agnieszka | Cybulski, Zefiryn
Alkyl polyglucosides, due to their low toxicity and environmental compatibility, could be used in biodegradation of hydrophobic compounds. In this study, the influence of Lutensol GD 70 on the cell hydrophobicity and zeta potential was measured. The particle size distribution and surfactant biodegradation were also investigated. Microbacterium sp. strain E19, Pseudomonas stutzeri strain 9, and the same strain cultivated in stress conditions were used in studies. Adding surfactant to the diesel oil system resulted in an increase of the cell surface hydrophobicity and the formation of cell aggregates (a high polydispersity index). The correlation between cell hydrophobicity and zeta potential in examined samples was not found. The results showed a significant influence of Lutensol GD 70 on the changes in cell surface properties. Moreover, a high biodegradation of a surfactant (over 50 %) by tested strains was observed. The biodegradation of Lutensol GD 70 depends on the length of both polar and nonpolar chains. A long-term contact with diesel oil of stressed strain modifies not only cell surface properties but also its ability to a surfactant biodegradation.
显示更多 [+] 显示较少 [-]As(III) Adsorption and Oxidation by Metal (Hydro) Oxides Enriched on Alligator Weed Root 全文
2015
Chen, Jian | Tao, Weihua | Sun, Cheng
The dried powder of the alligator weed root (AWR) was employed as a biosorbent to remove As(III) from aqueous solution, using acid pre-treated AWR (HAWR) and As(V) as the contrasts. The results of batch adsorption experiment suggested that there is no substantial difference between As(III) and As(V) adsorption. Both of them are affected by the solution pH significantly, but insensitive to the ionic strength. The speciation analysis indicated that more than 95 % of the total As(III) in aqueous solution is oxidized into As(V) in the presence of AWR, while barely oxidized in the presence of HAWR. It proves that without pre-oxidation, AWR can oxidize and adsorb As(III), simultaneously. The properties of the biosorbent were characterized by various techniques including scanning electronic microscopy-energy dispersive spectrometer, Fourier transform infrared spectra analysis, inductive coupled plasma emission spectrometer and Zeta potential detection. The results suggested that typical metals including Mn, Fe and Al enrich in the morphology of metal (hydro) oxide over the surface of AWR, originally. Based on the nature of the biosorbent and arsenic besides the adsorption and oxidation performances, the metal (hydro) oxides are proved as the essential role to drive the adsorption and oxidation. The proof is that with the metal (hydro) oxides denuded, as the contrast of AWR, HAWR loses its capability of adsorption and oxidation for As(III), totally.
显示更多 [+] 显示较少 [-]Seasonal and Diurnal Dynamics of Atmospheric Radon, Carbon Dioxide, Methane, δ13C-CO2 and δ13C-CH4 in a Proposed Australian Coal Seam Gas Field 全文
2015
Tait, Douglas R. | Maher, Damien T. | Santos, Isaac R.
The expected growth of the coal seam gas industry in Australia requires baseline information for determining any potential long-term impacts of the industry. As such, a 1-year atmospheric time series measuring radon (²²²Rn), methane (CH₄), carbon dioxide (CO₂), δ¹³C-CO₂ and δ¹³C-CH₄ was conducted in an area where coal seam gas (CSG; also referred to as coal bed methane) extraction is proposed (Casino, New South Wales, Australia). We hypothesise that ²²²Rn can be used as a tracer of soil-atmosphere CH₄ and CO₂ exchange, and that carbon stable isotope values of atmospheric CH₄ and CO₂ can be used to identify the source of greenhouse gases. Radon, CO₂ and CH₄ followed a diurnal pattern related to increased concentrations during the formation of a nighttime inversion layer. The study found a significant inverse linear relationship between ²²²Rn concentrations and both rainfall (r ² = 0.43, p < 0.01) and temperature (r ² = 0.13, p < 0.01), while atmospheric pressure, wind speed and wind direction affected concentrations to a lesser degree over seasonal time scales. ²²²Rn had a significant, but weak positive correlation with both seasonal CO₂ (r ² = 0.15, p < 0.01) and CH₄ (r ² = 0.11, p < 0.01) concentrations. The uncoupling between ²²²Rn and CO₂ and CH₄ was likely due to biogenic sources and sinks of CO₂ and CH₄. δ¹³C values of CO₂ and CH₄ indicated variability in the source and sinks of the gases that seems to be linked to different seasonal, soil and spatial sources. This study provides baseline data from a proposed coal seam gas field from which future comparisons can be made.
显示更多 [+] 显示较少 [-]Critical Comparison of Soil Pollution Indices for Assessing Contamination with Toxic Metals 全文
2015
Cai, Chao | Xiong, Bijing | Zhang, Youchi | Li, Xinhu | Nunes, Luis M.
Aggregation of environmental monitoring data into indices is a common procedure when the objective of the assessment is the evaluation of some environmental criterion for large areas, usually with planning purposes. Two types of aggregation functions are commonly used in the construction of indices: the weighted sum and the constant elasticity of substitution. Several criteria have been proposed for the selection of aggregation functions, namely, (i) ambiguity, which happens when all indicators indicate non-contamination, but the index fails to reflect this observation; (ii) eclipsing, i.e., the index fails to reflect contamination indicated by one of the variables; (iii) rigidity occurs when the introduction of more variables result in increased failure in the classification given by the index, as indicated by a decrease of the index. The first two criteria are easily checked, but the latter is more difficult to evaluate. A method to assess rigidity is here proposed and applied. Two other criteria are also proposed: sensitivity and accuracy. The present study compares and discusses the use of pollution indices for the classification of soils as to heavy metal pollution, with both empirical and real-world data. In the end, some criteria for index selection are indicated, along with their ranking for different practical circumstances. The Nemerow pollution index and the ecological risk index complied with all the fundamental criteria making them good general-use indices.
显示更多 [+] 显示较少 [-]Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment—Sources, Risks, Biodegradation 全文
2015
Marchlewicz, Ariel | Guzik, Urszula | Wojcieszyńska, Danuta
Recently, the increased use of monocyclic non-steroidal anti-inflammatory drugs has resulted in their presence in the environment. This may have potential negative effects on living organisms. The biotransformation mechanisms of monocyclic non-steroidal anti-inflammatory drugs in the human body and in other mammals occur by hydroxylation and conjugation with glycine or glucuronic acid. Biotransformation/biodegradation of monocyclic non-steroidal anti-inflammatory drugs in the environment may be caused by fungal or bacterial microorganisms. Salicylic acid derivatives are degraded by catechol or gentisate as intermediates which are cleaved by dioxygenases. The key intermediate of the paracetamol degradation pathways is hydroquinone. Sometimes, after hydrolysis of this drug, 4-aminophenol is formed, which is a dead-end metabolite. Ibuprofen is metabolized by hydroxylation or activation with CoA, resulting in the formation of isobutylocatechol. The aim of this work is to attempt to summarize the knowledge about environmental risk connected with the presence of over-the-counter anti-inflammatory drugs, their sources and the biotransformation and/or biodegradation pathways of these drugs.
显示更多 [+] 显示较少 [-]Sensitivity of a Shiga Toxin-Producing and an Uropathogenic Escherichia coli to UV Irradiation After Freeze-Thaw 全文
2015
Gao, W. | Leung, K.
This study aims to investigate the effect of freeze-thaw on the sensitivity of two different strains of Escherichia coli bacteria, O157:H7 strain 961019 and E. coli ATCC 25922 strain, to UV irradiation. The O157:H7 strain was a toxin-producing E. coli, and the ATCC 25922 strain is an opportunistic pathogen that can cause urinary tract infection. Cells of the two E. coli strains were frozen at −7, −15, and −30 °C with one, three, and five freeze-thaw cycles prior to UV irradiation. The UV inactivation levels of the freezing-treated E. coli cells were compared with those without freezing (the controls). Freezing affected the sensitivity of the test microbes to UV light, and the effect was strain dependent. A significant increase in resistance to UV light was observed in the freezing-treated cells as compared to the control samples. The ATCC 25922 strain showed more resistance to UV irradiation than the O157:H7 strain 961019 in most cases. The O157:H7 strain 961019, on the other hand, became more resistant to UV with increased freeze-thaw cycles.
显示更多 [+] 显示较少 [-]Biosurfactant Production by Strains of Azospirillum Isolated from Petroleum-Contaminated Sites 全文
2015
Ojeda-Morales, Marcia E. | Domínguez-Domínguez, Marivel | Hernández-Rivera, Miguel A. | Zavala-Cruz, Joel
Some microorganisms can produce biotensoactive when in contact with hydrocarbons, which favours micelle formation, allowing microbial cells to metabolise them effectively. In this study, we evaluated the capacity of nitrogen-fixing (NFB) and hydrocarbonoclastic bacterial strains to generate biotensoactive. The sampling site was in a flood plain of the Chico Zapote River, on the low basin of the Tonalá River in Tabasco, Mexico. Rhizospheres and soil contaminated by oil were collected, and the concentration of oil and botanic samples were determined for their taxonomic classification. The collected rhizosphere oil was seeded into Congo red cultures to obtain Azospirillum (NFB) bacteria. The NFB strain was placed in liquid mineral medium with oil as the only carbon source to identify the hydrocarbonoclastic strains. Biochemical and physiological evaluations determined that the species were Azospirillum brasilense and Azospirillum lipoferum. The strains were placed into Kim medium for generating a biosurfactant. The biosurfactant produced by A. brasilense showed an emulsion stability of 229 min, yield of 0.1375 g L⁻¹, emulsion capacity of 80 % and superficial tension of 38 mN m⁻¹, and while the biotensoactive produced by A. lipoferum had an emulsion stability of 260 min, yield of 0.22 g L⁻¹, emulsion capacity of 90 % and superficial tension of 35.5 mN m⁻¹.
显示更多 [+] 显示较少 [-]Effect of Combined Microwave-Ultrasonic Pretreatment of Real Mixed Sludge on the Enhancement of Anaerobic Digester Performance 全文
2015
Yeneneh, Anteneh Mesfin | Kayaalp, Ahmet | Sen, Tushar Kanti | Ang, Ha Ming
The anaerobic biodegradability of combined microwave-ultrasonic pretreated thickened excess activated sludge (PTEAS) mixed with raw primary sludge (PS) was investigated in this study. The pretreatment resulted in the enhancement of mesophilic anaerobic digester performance which in turn improved biogas production capacity and quality, total and volatile solid reduction, dewaterability, protein solubilisation and significant reduction of pathogens to produce class A biosolid. This study presented the results of two continuously stirred mesophilic anaerobic digesters charged with various proportions of a mixture of PTEAS and PS similar to the large-scale industrial practice. Digester 1 was charged with 75 % PTEAS and 25 % PS, while digester 2 was fed with 25 % PTEAS and 75 % PS. The methane production was 122 mL CH₄/g total chemical oxygen demand for digester 2 after 20 days of anaerobic digestion. This amount further increased for both digesters with digestion time. The biogas quality in terms of methane to carbondioxide ratio (CH₄/CO₂) was significantly improved for digester 1 compared with digester 2 after 20 days of digestion. Volatile solid reduction of 76 and 57 % was achieved for digester 1 and digester 2 respectively after the same 20 days of digestion. The CH₄/CO₂ ratio reached 2.2:1 and 1.1:1 after 20 days of digestion for digester 1 and digester 2, respectively. Higher percentage of PTEAS increases the digestion kinetics, the methane production capacity and the biogas quality. Furthermore, total coliform reduction of 84 and 44 % was achieved for digester 1 and digester 2 respectively after 22 days of digestion. Hydrolysis rate and biochemical methane production were improved for both digesters based on the results of Gompertz kinetic model and the hydrolysis rate constants as determined by model fitting of the experimental data.
显示更多 [+] 显示较少 [-]Sustainable Treatment of Antibiotic Wastewater Using Combined Process of Microelectrolysis and Struvite Crystallization 全文
2015
Zhang, Jishi | Chen, Shujun | Wang, Xikui
The aim of this study was to investigate the synergistic effects of the process of iron-carbon microelectrolysis (ICME) followed by struvite (MAP) crystallization on treating antibiotic wastewater. Characteristics of ICME effluent depended mainly on the iron to carbon mass ratio (Fe/C). The optimum reaction conditions of Fe/C ratio of 2:1 and reaction time of 90 min were observed. The ICME effluent was further treated by MAP crystallization using Na₂HPO₄·12H₂O and MgCl₂·6H₂O as precipitation agents. The results showed that, the Mg²⁺/NH₄ ⁺-N/PO₄ ³⁻-P molar ratio of 1:1:1 and pH 8.5, were suitable for the crystallization process, which could obtain high-quality MAP containing 5.18 % N,10.23 % Mg, and 13.83 % P. Optimal total removal rate of COD and NH₄ ⁺-N removal rate achieved 84.6 and 89.9 %, respectively. The economic evaluation of NH₄ ⁺-N recovery by the synergistic process was also conducted, indicating that the synergistic process had the potential to benefit COD emission reduction and nitrogen recovery. Graphical Abstract The aim of this study was to investigate the effects of treating antibiotic wastewater using iron and carbon combined process of microelectrolysis and struvite (MAP) crystallization. The MAP was of high purity and good crystal morphology, which could be used as a slow-release fertilizer.
显示更多 [+] 显示较少 [-]