细化搜索
结果 1551-1560 的 6,473
Free and conjugated estrogens detections in drainage tiles and wells beneath fields receiving swine manure slurry
2020
Casey, Francis X.M. | Hakk, Heldur | DeSutter, Thomas M.
Although livestock manure, such as from swine (Sus scrofa domestica), have high capacity to introduce endocrine-disrupting free estrogens into the environment, the frequency of estrogen detections from reconnaissance studies suggest that these compounds are ubiquitous in the environment, perhaps resulting from historic manure inputs (e.g. cattle grazing residues, undocumented historic manure applications) or uncontrolled natural sources. Compared to free estrogens, conjugates of estrogens are innocuous but have greater mobility in the environment. Estrogen conjugates can also hydrolyze to re-form the potent free estrogens. The objective of this study was to identify the transport of free and conjugated estrogens to subsurface tile drains and groundwater beneath fields treated with swine manure slurry. Three field treatments were established, two receiving swine lagoon manure slurry and one with none. Manure slurry was injected into soils at a shallow depth (∼8 cm) and water samples from tile drains and shallow wells were sampled periodically for three years. Glucuronide and sulfate conjugates of 17β-estradiol (E2) and estrone (E1) were the only estrogen compounds detected in the tile drains (total detects = 31; 5% detection frequency; conc. range = 3.9–23.1 ng L(−1)), indicating the important role conjugates played in the mobility of estrogens. Free estrogens and estrogen conjugates were more frequently detected in the wells compared to the tile drains (total detects = 70; 11% detection frequency; conc. range = 4.0–1.6 × 103 ng L(−1)). No correlations were found between estrogen compound detections and dissolved or colloidal organic carbon (OC) fractions or other water quality parameters. Estrogenic compounds were detected beneath both manure treated and non-treated plots; furthermore, the total potential estrogenic equivalents (i.e. estrogenicity of hydrolyzed conjugates + free estrogens) were similar between treated and non-treated plots.
显示更多 [+] 显示较少 [-]Effect of substitution reaction with tin chloride in thermal treatment of mercury contaminated tailings
2020
Lee, Eun-Song | Cho, Soo-Jin | Back, Seung-Ki | Seo, Yong-Chil | Kim, Seong-Heon | Ko, Ju-In
Sites contaminated by mercury (Hg) from artisanal small-scale gold mine tailings have been found near agricultural land. For the active implementation of the Minamata Convention on Mercury, development of technology for the remediation of Hg contaminated sites is required. This study examined the conditions for the thermal treatment of Hg contaminated tailings at reduced temperature by introducing SnCl₂ as an additive. Thermogravimetric analysis (TGA) was used to identify the possibility of converting typical Hg compounds (HgO, HgS) in the environment to HgCl₂. The operation conditions for thermal treatment such as temperature, retention time, and ratio of [Cl₂]/[Hg] were derived from lab scale experiments using commercial Hg compounds (HgO, HgS), additive (SnCl₂), and tailings. The tailings with Hg content of 26.39 mg-Hg/kg were reduced to 3.87 mg-Hg/kg and 4.57 μg-g/L of leaching concentration through the application of the Korea standard leaching test. Both concentrations were below the standard limit of soil pollution and hazardous waste classification criteria. The sequential extraction procedure was applied to evaluate the Hg stability of residual tailings. The results show that this method will be effective for remediation of small scale Hg contaminated areas.
显示更多 [+] 显示较少 [-]Multi-approach assessment for the evaluation of spatio-temporal estrogenicity in fish from effluent-dominated surface waters under low instream flow
2020
Franco, Marco E. | Burket, S Rebekah | Sims, Jaylen L. | Lovin, Lea M. | Scarlett, Kendall R. | Stroski, Kevin | Steenbeek, Ruud | Ashcroft, Craig | Luers, Michael | Brooks, Bryan W. | Lavado, Ramon
Current practices employed by most wastewater treatment plants (WWTP) are unable to completely remove endocrine disrupting compounds (EDCs) from reclaimed waters, and consistently discharge these substances to receiving systems. Effluent-dominated and dependent surface waters, especially during low instream flows, can increase exposure and risks to aquatic organisms due to adverse biological effects associated with EDCs. Given the ecological implications that may arise from exposure to such compounds, the present a multi-approach study examined spatio-temporal estrogenic potential of wastewater effluent to fish in East Canyon Creek (ECC), Utah, USA, a unique urban river with instream flows seasonally influenced by snowmelt. Juvenile rainbow trout (Oncorhynchus mykiss) were caged at different upstream and downstream sites from an effluent discharge during the summer and fall seasons. In the summer, where approximately 50% of the streamflow was dominated by effluent, fish from the upstream and a downstream site, located 13 miles away from the effluent discharge, presented significantly elevated concentrations of plasma vitellogenin (VTG). Similarly, significantly high 17β-estradiol to 11-ketotestosterone ratios were measured in the summer across all sites and time points, compared to the fall. In the laboratory, juvenile fish and primary hepatocytes were exposed to concentrated effluent and surface water samples. Quantification of VTG, although in significantly lower levels, resembled response patterns observed in fish from the field study. Furthermore, analytical quantification of common EDCs in wastewater revealed the presence of estriol and estrone, though these did not appear to be related to the observed biological responses, as these were more significant in sites were no EDCs were detected. These combined observations suggest potential estrogenicity for fish in ECC under continuous exposures and highlight the advantages of following weight-of-evidence (WoE) approaches for environmental monitoring, as targeted analytically-based assessments may or may not support the identification of causative contaminants for adverse biological effects.
显示更多 [+] 显示较少 [-]Mask use during COVID-19: A risk adjusted strategy
2020
Wang, Jiao | Pan, Lijun | Tang, Song | Ji, John S. | Shi, Xiaoming
In the context of Coronavirus Disease (2019) (COVID-19) cases globally, there is a lack of consensus across cultures on whether wearing face masks is an effective physical intervention against disease transmission. This study 1) illustrates transmission routes of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2); 2) addresses controversies surrounding the mask from perspectives of attitude, effectiveness, and necessity of wearing the mask with evidence that the use of mask would effectively interrupt the transmission of infectious diseases in both hospital settings and community settings; and 3) provides suggestion that the public should wear the mask during COVID-19 pandemic according to local context. To achieve this goal, government should establish a risk adjusted strategy of mask use to scientifically publicize the use of masks, guarantee sufficient supply of masks, and cooperate for reducing health resources inequities.
显示更多 [+] 显示较少 [-]Role of prey subcellular distribution on the bioaccumulation of yttrium (Y) in the rainbow trout
2020
Cardon, Pierre-Yves | Roques, Olivier | Caron, Antoine | Rosabal, Maikel | Fortin, Claude | Amyot, Marc
Our knowledge of the processes leading to the bioaccumulation of rare earth elements (REE) in aquatic biota is limited. As the contamination of freshwater ecosystems by anthropogenic REE have recently been reported, it becomes increasingly urgent to understand how these metals are transferred to freshwater organisms in order to develop appropriate guidelines. We exposed rainbow trout (Oncorhynchus mykiss) to an REE, yttrium (Y), to either a range of Y-contaminated prey (Daphnia magna) or a range of Y-contaminated water. For the feeding experiment, the relationship between the Y assimilation by O. mykiss and the Y subcellular fractionation in D. magna was evaluated. Assimilation efficiency of Y by O. mykiss was low, ranging from 0.8 to 3%. These values were close to the proportion of Y accumulated in D. magna cytosol, 0.6–2%, a theoretical trophically available fraction. Moreover, under our laboratory conditions, water appeared as a poor source of Y transfer to O. mykiss. Regardless of the source of contamination, a similar pattern of Y bioaccumulation among O. mykiss tissues was revealed: muscles < liver < gills < intestine. We conclude that the trophic transfer potential of Y is low and the evaluation of Y burden in prey cytosol appears to be a relevant predictor of Y assimilation by their consumers.
显示更多 [+] 显示较少 [-]Spatiotemporal variation of paralytic shellfish toxins in the sea area adjacent to the Changjiang River estuary
2020
Liu, Yang | Dai, Li | Chen, Zhen-Fan | Geng, Hui-Xia | Lin, Zhuo-Ru | Zhao, Yue | Zhou, Zheng-Xi | Kong, Fan-Zhou | Yu, Ren-Cheng | Zhou, Ming-Jiang
The Changjiang (Yangtze River) River estuary (CRE) and its adjacent coastal waters is a notable region for nutrient pollution, which results in severe problems of coastal eutrophication and harmful algal blooms (HABs). The occurrence of HABs, particularly those of dinoflagellate Alexandrium spp. capable of producing paralytic shellfish toxins (PSTs), has an increasing risk of contaminating seafood and poisoning human-beings. The investigation of PSTs, however, is often hampered by the relatively low abundance of Alexandrium spp. present in seawater. In this study, a monitoring strategy of PSTs using net-concentrated phytoplankton from a large volume of seawater was employed to examine spatiotemporal variations of PSTs in the CRE and its adjacent waters every month from February to September in 2015. Toxins in concentrated phytoplankton samples were analyzed using high-performance liquid chromatography coupled with a fluorescence detector (HPLC-FLD). The results showed that PSTs could be detected in phytoplankton samples during the sampling stage in the CRE and its adjacent waters. Toxin content increased gradually from February to May, reached the peak in June, and then decreased rapidly from July to September. The maximum value of PST content was 215 nmol m⁻³ in June. Low-potency toxins N-sulfocarbamoyl toxins 1/2 (C1/2) were the most dominant components of PST in phytoplankton samples from February to June in 2015, while high-potency gonyautoxin 4 (GTX4) became the dominant component from July to September. Toxins were mainly detected from three regions, the sea area north to the CRE, the sea area east to the CRE, and sea area near Zhoushan Island south to the CRE. Based on the results of this study, it can be inferred that the three regions around the CRE in May and June is of high risk for PST contamination and seafood poisoning.
显示更多 [+] 显示较少 [-]Effect of spraying on coal dust diffusion in a coal mine based on a numerical simulation
2020
Ma, Qingxin | Nie, Wen | Yang, Shibo | Xu, Changwei | Peng, Huitian | Liu, Zhiqiang | Guo, Cheng | Cai, Xiaojiao
Aimed at effectively controlling coal dust pollution in the mining face of a coal mine, this study first conducted a theoretical analysis and then combined a spraying experiment and a numerical simulation to perform an in-depth examination of the atomizing characteristics and dust suppression performance of a coal cutter external spraying device. Based on the experimental spraying results, the optimal nozzle was determined to be a pressure round-mouth nozzle with an X-shaped core. The characteristics of the spray fields from nozzles of different calibers (1.6, 2.0 and 2.4 mm) at different spraying pressures (2, 4, 6 and 8 MPa) were then analyzed. It was found that the droplet concentration in the spray field increased with increasing spraying pressure and nozzle caliber. The droplet diameter was mainly dependent on the spraying pressure and varied more slowly with increased spraying pressure. At a spraying pressure of 8 MPa, the spray field formed could achieve effective dust suppression; specifically, the droplet concentration in the spray field was mostly more than 15 g/m³, and the droplet size was mainly distributed in the range of 30–100 μm. When using a 2.4 mm caliber nozzle, the dust concentration measured around the coal cutter operator was reduced to 87.21 mg/m³ under a spraying pressure of 8 MPa, suggesting adequate dust suppression.
显示更多 [+] 显示较少 [-]Evaluating soil and nutrients (C, N, and P) loss in Chinese Torreya plantations
2020
Chen, Xiongwen | Xiao, Pengfei | Niu, Jianzhi | Chen, Xi
Improper land-use changes may lead to a loss of soil resources and cause environmental pollution. Chinese Torreya plantation (hereafter CTP) is an important cash tree plantation for nuts production in the mountainous areas of subtropical China. The increasing development of CTPs, to increase seed production, can result in the complete erasure of local natural vegetation.In this study, the vulnerability to soil erosion, loss of soil organic carbon (SOC) and nutrients in CTPs due to land-use change were evaluated. The results indicated that the rates of diffusive soil erosion in the young CTPs with extreme precipitation were about six-fold higher than with the natural vegetation. At sites with a similar slope, there was no significant difference in soil erosion levels between the young and old CTPs. The old CTPs did not hold significantly higher levels of SOC and soil total nitrogen (STN) in their topsoil when compared with the young CTPs. The natural mixed broadleaved subtropical forests lost about 35% of their SOC and 25% of their STN after they were converted into CTPs, but the CTPs had higher soil total phosphorus. The C: N ratios at the different sites were close to 11:1, but the N: P ratios were diverse. There were high levels of organic carbon, nitrogen and phosphorus in stream water. Adequate coverage of natural vegetation within or around the CTPs should be maintained to decrease soil erosion and nutrient loss. Suggestions to develop CTPs while protecting the environment are discussed. Overall, it was determined that aspects of the current management practices and strategies for developing CTPs should be changed to decrease soil erosion and nutrient loss.
显示更多 [+] 显示较少 [-]N2O emissions and product ratios of nitrification and denitrification are altered by K fertilizer in acidic agricultural soils
2020
Li, Zhiguo | Xia, Shujie | Zhang, Runhua | Zhang, Runqin | Chen, Fang | Liu, Yi
Potassium (K) fertilizer plays an important role in increasing crop yield, quality, and nitrogen use efficiency. However, little is known about its environmental impacts, such as its effects on emissions of the greenhouse gas nitrous oxide (N₂O). A nitrogen-15 (¹⁵N) tracer laboratory experiment was therefore performed in an acidic agricultural soil in the suburbs of Wuhan, central China, to determine the effects of K fertilizer on N₂O emissions and nitrification/denitrification product ratios under N fertilization. During 15-d incubation periods with a fixed initial N concentration (80 mg kg⁻¹), K application increased average N₂O emission rates significantly (1.6–10.8-fold) compared to the control treatment. N₂O emissions derived from nitrification and denitrification both increased in K-treated soil, and denitrification contributed more to the increase; its contribution ratio rose from 32% without K fertilizer to 53% with 300 mg kg⁻¹ of K applied. The increase in N₂O emissions under K fertilization is probably due to an increase in the activity of denitrifying microorganisms and acid-resistant nitrifying microorganisms caused by higher K⁺ concentrations and lower soil pH. Combined treatment with potassium chloride (KCl) and N fertilizer produced lower N₂O emissions than combined treatment with potassium sulfate (K₂SO₄) and N fertilizer during 15-d incubation periods. Our results imply that there are significant interaction effects between N fertilizers and K fertilizers on N₂O emissions. In particular, combining N fertilizers with fertilizers that reduce soil acidity or contain Cl or K ions may significantly affect agricultural N₂O emissions.
显示更多 [+] 显示较少 [-]Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland
2020
Kotowska, Urszula | Kapelewska, Justyna | Sawczuk, Róża
Phthalates or phthalic acid esters (PAEs) are chemical compounds whose use is exceptionally widespread in everyday materials but, at the same time, have been proven to have harmful effects on living organisms. Effluents from municipal wastewater treatment plants (WWTP) and leachates from municipal solid waste (MSW) landfills are important sources of phthalates with respect to naturally occurring waters. The main aim of this research was determination, mass loads, removal rates and ecological risk assessment of eight phthalates in municipal wastewaters, landfill leachates and groundwater from Polish WWTPs and MSW landfills. Solid-phase microextraction and gas chromatography with mass spectrometry were used for the extraction and determination of analytes. Summed up concentrations of eight phthalates ranged from below LOD to 596 μg/L in influent wastewater with the highest concentration found for bis-2-ethylhexyl phthalate (DEHP) (143 μg/L). The average degree of phthalate removal varies depending on the capacity of a given treatment plant with larger treatment plants coping better than smaller ones. The highest treatment efficiency for all tested treatment plants, over 90%, was reported for dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall concentrations of phthalates in leachates ranged from below LOD to 303 μg/L while the highest maximum concentration was registered for DEHP (249 μg/L). Overall concentrations of phthalic acid esters in groundwater from upstream monitoring wells ranged from below LOD to 1.8 μg/L and from LOD to 27.9 μg/L in samples from wells downstream of MSW landfills. The obtained data shows that diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), DEHP, and diisononyl phthalate (DINP) pose a high risk for all trophic levels being considered in effluent wastewaters. In the case of groundwater high environmental risk was recorded for DBP and DEHP for all tested trophic levels. Phthalates, in concentrations that pose a high environmental risk, are present in Polish municipal after-treatment wastewater as well as in groundwater under municipal solid waste landfills.
显示更多 [+] 显示较少 [-]