细化搜索
结果 1571-1580 的 7,288
Heterogeneous impacts of mobility restrictions on air quality in the State of Sao Paulo during the COVID-19 pandemic 全文
2022
Cirqueira, Samirys Sara Rodrigues | Rodrigues, Patricia Ferrini | Branco, Pedro | Vormittag, Evangelina | Nunes, Rafael | Anastacio, Andressa Vilas Boas | Veras, Mariana | Sousa, Sofia | Saldiva, Paulo H. N. (Paulo Hilário Nascimento)
Air quality in the State of Sao Paulo was evaluated during the first general State plan of mobility restrictions due to the COVID-19 pandemic (24th March to May 31, 2020). Nitrogen dioxide (NO₂), ozone (O₃), particulate matter PM₁₀ and PM₂.₅ and sulphur dioxide (SO₂) concentrations were assessed in cities of the Sao Paulo State with a monitoring station and compared to historical data. Linear regression models were built to investigate the relationship between the isolation of the population – determined using mobile phone monitoring data - and the concentration of each pollutant during the studied period. Although the reduction of pollutants such as NO₂, SO₂ and PM₂.₅ is very clear, the economic and climatic characteristics of each region were decisive in the general behaviour of O₃ and PM₁₀. It was not possible to establish a correlation between the pollutants and the isolation index, partly due to the lack of data, partly due to the compliance of the population to those measurements, which was variable over time. Another important limitation factor was the absence of data related to the pollutants of interest in many of the stations. However, the isolation measures carried out in the State opened the opportunity to individually assess the air quality measurements in each of the stations, enabling an understanding that will allow in the future the design of air quality policies together with local sanitary policies.
显示更多 [+] 显示较少 [-]Fluoride exposure cause colon microbiota dysbiosis by destroyed microenvironment and disturbed antimicrobial peptides expression in colon 全文
2022
Zhu, Shi-quan | Liu, Jing | Han, Bo | Zhao, Wen-peng | Zhou, Bian-hua | Zhao, Jing | Wang, Hong-wei
Colon microenvironment and microbiota dysbiosis are closely related to various human metabolic diseases. In this study, a total of 72 healthy female mice were exposed to fluoride (F) (0, 25, 50 and 100 mg/L F⁻) in drinking water for 70 days. The effect of F on intestinal barrier and the diversity and composition in colon microbiota have been evaluated. Meanwhile, the relationship among F-induced colon microbiota alterations and antimicrobial peptides (AMPs) expression and short-chain fatty acids (SCFAs) level also been assessed. The results suggested that F decreased the goblet cells number and glycoprotein expression in colon. And further high-throughput 16S rRNA gene sequencing result demonstrated that F exposure induced the diversity and community composition of colonic microbiota significantly changes. Linear Discriminant Analysis Effect Size (LEfSe) analysis identified 11 predominantly characteristic taxa which may be the biomarker in response to F exposure. F-induced intestinal microbiota perturbations lead to the significantly decreased SCFAs levels in colon. Immunofluorescence results showed that F increased the protein expression of interleukin-17A (IL-17A) and IL-22 (P < 0.01) and disturbed the expression of interleukin-17 receptor A (IL-17RA) and IL-22R (P < 0.05 or P < 0.01). In addition, the increased expression of IL-17A and IL-22 cooperatively enhanced the mRNA expression of AMPs which response to F-induced microbiota perturbations. Collectively, destroyed microenvironment and disturbed AMPs are the primary reason of microbiota dysbiosis in colon after F exposure. Colonic homoeostasis imbalance would be helpful for finding the source of F-induced chronic systemic diseases.
显示更多 [+] 显示较少 [-]Estimating organic aerosol emissions from cooking in winter over the Pearl River Delta region, China 全文
2022
Xing, Li | Fu, Tzung-May | Liu, Tengyu | Qin, Yiming | Zhou, Liyuan | Chan, Chak K. | Guo, Hai | Yao, Dawen | Duan, Keqin
Cooking is an important source of organic aerosols (OA), particularly in urban areas, but it has not been explicitly included in current emission inventories in China. This study estimated the organic aerosol emissions from cooking during winter over the Pearl River Delta (PRD) region, China. Using the retrieved hourly cooking organic aerosol (COA) concentrations at two sites in Hong Kong and Guangzhou, population density, and daily per capita COA emissions, we determined the spatial and temporal distribution of COA emissions over the PRD region based on two approaches by treating COA as non-volatile (NVCOA) and semi-volatile (SVCOA), respectively. By using the estimated COA emissions and the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) model, we reproduced the diurnal cycles of COA concentrations at the PolyU site in Hong Kong and Panyu site in Guangzhou. We also resolved the different patterns of COA between weekdays and weekends. The mean COA concentration during wintertime over the urban areas of the PRD region was 0.7 μg m⁻³ and 0.9 μg m⁻³ for the NVCOA and SVCOA cases, respectively, contributing 5.1% and 6.9% to the urban OA concentrations. The total COA emissions in winter over the PRD region were estimated to be 3.5 × 10⁸ g month⁻¹ and 3.8 × 10⁸ g month⁻¹ for the NVCOA and SVCOA cases, respectively, adding 34.8% and 37.8% to the total primary organic aerosol emissions. Considering COA emissions in the model increased the mean regional OA concentrations by 4.6% and 7.4% for the NVCOA and SVCOA cases, respectively. Our study therefore highlights the importance of cooking activities to OA concentrations in winter over the PRD region.
显示更多 [+] 显示较少 [-]Microbial metabolism changes molecular compositions of riverine dissolved organic matter as regulated by temperature 全文
2022
Tang, Gang | Zheng, Xing | Hu, Shiwen | Li, Binrui | Chen, Shuling | Liu, Tong | Zhang, Bowei | Liu, Chongxuan
This study investigated the control of dissolved organic matter (DOM) molecular compositions by microbial community shifts under temperature regulation (range from 5 to 35 °C), using riverine DOM and in situ microorganisms as examples. The functioning of different microbial metabolisms, including the utilization and generation processes, was comprehensively analyzed. Though the overall quantity of DOM was less temperature-affected, more molecules were identified at moderate temperatures (e.g., 15 and 25 °C) and their accumulated mass peak intensities increased with the temperature. The results were ascribed to 1) the microbial production of macromolecular (m/z > 600) CHO, CHON, and CHONS species was stimulated at higher temperatures; 2) the microorganisms consumed more DOM molecules at both higher and lower temperatures; and 3) the simultaneously decreased utilization and increased generation of recalcitrant CHO and CHON molecules with m/z < 600 at higher temperatures. The strong correlations among the temperature, community structures, and DOM chemodiversity suggested that temperature promoted the community evenness to increase the DOM generation. In addition, the higher temperature decreased the abundance of microorganisms that utilized more recalcitrant molecules and produced fewer new molecules (e.g., Proteobacteria, Acinetobacter, and Erythrobacter) while increased others that functioned the opposite (e.g., Verrucomicrobia, Bacteroidetes, and Flavobacterium) to increase the DOM production. The constructed temperature-community-DOM chemistry relationship deepened the molecular-level understanding of DOM variations and provided implications for the warming future.
显示更多 [+] 显示较少 [-]Heavy metal residues, releases and food health risks between the two main crayfish culturing models: Rice-crayfish coculture system versus crayfish intensive culture system 全文
2022
Mo, Aijie | Dang, Yao | Wang, Jianghua | Liu, Chunsheng | Yang, Huijun | Zhai, Yuxiang | Wang, Yuesong | Yuan, Yongchao
High-density culturing with excessive feeding of commercial feed has caused heavy metals pollution to agricultural production system. In this study, the dynamic changes and transfer of heavy metals in rice-crayfish coculture system (RCCS) and crayfish intensive culture system (CICS) within a completed culture cycle were systematically quantified. Our results showed that Cd in feed represented more than 50% of the total Cd input, and the inputs of As and Cr were mainly from irrigation. The residues of As and Pb in RCCS were slightly higher than those in CICS, while the residues of Cd and Cr in RCCS were far fewer than those in CICS. Moreover, the metal pollution index in CICS was 0.781, while it was 0.543 in the RCCS. Furthermore, a large proportion of the Cd and Pb in CICS was released into the external environment through drainage. Notably, the absorption and solidification of heavy metals by straw did not increase the residues of As and Pb in the major components of RCCS in the second year. Compared to CICS, RCCS did not produce many heavy metal residues or cause heavy metal discharge pressure on the external environment, and its food product had a low risk of heavy metal contamination.
显示更多 [+] 显示较少 [-]Nitrogen input promotes denitrifying methanotrophs’ abundance and contribution to methane emission reduction in coastal wetland and paddy soil 全文
2022
Wang, Jiaqi | Yao, Xiangwu | Jia, Zhongjun | Zhu, Lizhong | Zheng, Ping | Kartal, Boran | Hu, Baolan
Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms. However, how elevated nitrogen level affects denitrifying methanotrophs has not been elucidated. In this study, sediment/soil samples from coastal wetland with continuous nitrogen input and paddy field with periodic nitrogen input were collected to investigate the influence of nitrogen input on the abundance and activity of denitrifying methanotrophs. The results indicated that nitrogen input significantly promoted DAMO microorganisms’ abundance and contribution to methane emission reduction. In the coastal wetland, the contribution rate of DAMO process to methane removal increased from 12.1% to 33.5% along with continuously elevated nitrogen level in the 3-year tracking study. In the paddy field, the DAMO process accounted for 71.9% of total methane removal when nitrogen fertilizer was applied during the growing season, exceeding the aerobic methane oxidation process. This work would help us better understand the microbial methane cycle and reduce uncertainties in the estimations of the global methane emission.
显示更多 [+] 显示较少 [-]Investigation of water-soluble organic constituents and their spatio-temporal heterogeneity over the Tibetan Plateau 全文
2022
Niu, Hewen | Lu, Xixi | Zhang, Guotao | Sarangi, Chandan
Investigating the migration and transformation of carbonaceous and nitrogenous matter in the cryosphere areas is crucial for understanding global biogeochemical cycle and earth's climate system. However, water-soluble organic constituents and their transformation in multiple water bodies are barely investigated. Water-soluble organic carbon (WSOC) and organic nitrogen (WSON), and particulate black carbon (PBC) in multiple types of water bodies in eastern Tibetan Plateau (TP) cryosphere for the first time have been systematically investigated. Statistical results exhibited that from south to north and from east to west of this region, WSOC concentrations in alpine river runoff were gradually elevated. WSOC and nitrogenous matter in the alpine river runoff and precipitation in the glacier region presented distinct seasonal variations. WSON was the dominant component (63.4%) of water-soluble total nitrogen in precipitation over high-altitude southeastern TP cryosphere. Water-soluble carbonaceous matter dominated the carbon cycle in the TP cryosphere, but particulate carbonaceous matter in the alpine river runoff had a small fraction of the cryospheric carbon cycle. Analysis of optical properties illustrated that PBC had a much stronger light absorption ability (MAC-PBC: 2.28 ± 0.37 m² g⁻¹) than WSOC in the alpine river runoff (0.41 ± 0.26 m² g⁻¹). Ionic composition was dominated by SO₄²⁻, NO₃⁻, and NH₄⁺ (average: 45.13 ± 3.75%) in the snow of glaciers, implying important contribution of (fossil fuel) combustion sources over this region. The results of this study have essential implications for understanding the carbon and nitrogen cycles in high altitude cryosphere regions of the world. Future work should be performed based on more robust in-situ observations and measurements from multiple environmental medium over the cryosphere areas, to ensure ecological protection and high-quality development of the high mountain Asia.
显示更多 [+] 显示较少 [-]Facile nanoplastics formation from macro and microplastics in aqueous media 全文
2022
Peller, Julie R. | Mezyk, Stephen P. | Shidler, Sarah | Castleman, Joe | Kaiser, Scott | Faulkner, Richard F. | Pilgrim, Corey D. | Wilson, Antigone | Martens, Sydney | Horne, Gregory P.
The immense production of plastic polymers combined with their discordancy with nature has led to vast plastic waste contamination across the geosphere, from the oceans to freshwater reservoirs, wetlands, remote snowpacks, sediments, air and multiple other environments. These environmental pollutants include microplastics (MP), typically defined as small and fragmented plastics less than 5 mm in size, and nanoplastics (NP), particles smaller than a micrometer. The formation of micro and nanoplastics in aqueous media to date has been largely attributed to fragmentation of plastics by natural (i.e., abrasion, photolysis, biotic) or industrial processes. We present a novel method to create small microplastics (≲ 5 μm) and nanoplastics in water from a wide variety of plastic materials using a small volume of a solubilizer liquid, such as n-dodecane, in combination with vigorous mixing. When the suspensions or solutions are subjected to ultrasonic mixing, the particle sizes decrease. Small micro- and nanoparticles were made from commercial, real world and waste (aged) polyethylene, polystyrene, polycarbonate and polyethylene terephthalate, in addition to other plastic materials and were analyzed using dark field microscopy, Raman spectroscopy and particle size measurements. The presented method provides a new and simple way to create specific size distributions of micro- and nanoparticles, which will enable expanded research on these plastic particles in water, especially those made from real world and aged plastics. The ease of NP and small MP formation upon initial mixing simulates real world environments, thereby providing further insight into the behavior of plastics in natural settings.
显示更多 [+] 显示较少 [-]Combined application of ferrihydrite and hydroxyapatite to immobilize soil copper, cadmium, and phosphate under flooding-drainage alternations 全文
2022
Cui, Hongbiao | Bao, Binglu | Cao, Yong | Zhang, Shiwen | Shi, Jianjun | Zhou, Jing | Zhou, Jun
Hydroxyapatite (HAP) can effectively immobilize soil heavy metals, but excess phosphate would be released to aquatic ecosystem, resulting in eutrophication. This study investigated the effects of ferrihydrite (FH) on the HAP immobilization of copper (Cu) and cadmium (Cd) and their reduction of phosphorus release under flooding-drainage alternation conditions. Results showed that the incorporation of HAP and FH significantly increased soil solution pH and decreased Cu²⁺ and Cd²⁺ concentrations. Applications of FH, HAP, and FH-HAP (FH and HAP combination) can all enhance soil pH and reduce CaCl₂-extractable and exchangeable Cu and Cd, but HAP addition increased soluble phosphate by 6.60–7.77 times compared to control. However, FH-HAP application can significantly reduce phosphate release by 92.7–99.7% compared to HAP application. FH-HAP was the most effective to reduce exchangeable Cu and Cd by 49.8–93.4% and 50.9–88.8% and decreased labile and moderately labile phosphorus by 34.0–74.4% and 13.5–18.6%, respectively, while increased stable phosphorus by 22–45.1% than single HAP. All FH treatments significantly increased amorphous iron oxides by the factors of 4.66–20.8, but only 3% and 5% of FH applications slightly enhanced crystal iron oxides by the factors of 0.81–1.27. The major implication is that the combination of FH and HAP can not only immobilize of Cu and Cd, but also reduce the risk of phosphate release by HAP addition.
显示更多 [+] 显示较少 [-]Unraveling the dynamics of organic micropollutants in wastewater: Online LC-MS/MS analysis at high temporal resolution 全文
2022
Köke, Niklas | Solano, Fernando | Knepper, T. P. (Thomas P.) | Frömel, Tobias
Online monitoring of organic micropollutants (OMPs) in the aquatic environment at high temporal resolution is an upcoming technique that provides insights into their dynamics and has the potential to bring water research and management to a new level. An online monitoring setup was developed to quantify OMPs in wastewater treatment plant (WWTP) influent and effluent using automated and continuous sampling, sample preparation, online solid-phase extraction-liquid chromatography-tandem mass spectrometry analysis and data evaluation. This online monitoring setup provided high selectivity and sensitivity (limit of quantification down to 1 ng/L) as well as a stable performance during one week of constant operation whilst using a high sampling frequency of 10 min (>1000 samples). Custom automated data evaluation enabled quantification within seconds after each measurement and results were comparable to those from a commercial software. Additionally, an alarm tool was included in the evaluation application, which automatically notified the user in case a substance exceeded a predefined threshold. The online monitoring setup was applied to WWTP influent and effluent, where 57 substances were monitored over a period of one week and two days, respectively. High temporal resolution enabled the observation of periodic patterns of pharmaceuticals as well as pollution by OMPs originating from point and diffuse sources, while dynamics of OMPs in WWTP effluent were less pronounced. These new insights into the dynamics of OMPs in WWTP influent, which would not be observable using 24 h composite samples, will be a starting point for new stormwater and wastewater research and management strategies.
显示更多 [+] 显示较少 [-]