细化搜索
结果 1581-1590 的 7,292
Remarkable characteristics and distinct community of biofilms on the photoaged polyethylene films in riverine microcosms 全文
2022
Huang, Hexinyue | Liu, Peng | Shi, Yanqi | Wu, Xiaowei | Gao, Shixiang
Recalcitrant plastics in the environment are gradually fragmented into weathered debris distinguished from their original state by the integrative action of influencing factors, such as UV light, heating and physical abrasion. As new artificial carbon-source substrates in aquatic ecosystems, plastic products can be colonized by biofilms and even utilized by microorganisms. To investigate the influences of weathering of plastics on the colonized biofilms, freshwater samples from the Yangtze River (Nanjing, China) were collected for biofilm incubation. Based on the characterization of plastics and biofilms, the effects of plastic surface properties on biofilm characteristics were revealed by the analysis of partial least squares regression (PLSR). Roughness was the principal influencing factor, while rigidity had the opposite effect to it. 16S rRNA gene high-throughput sequencing results indicated the high relative abundance of Cyanobacteria and rising proportion of harmful components (e.g., Flavobacterium) on photoaged polyethylene plastics. The microbial functional profiles (KEGG) predicted by Tax4Fun showed that the functions (e.g., membrane transport, energy metabolism, etc.) of biofilm on photoaged plastics were dissimilar with those on original ones. These findings suggested that the distinct microbial community and the adverse functional changes in biofilms on photoaged plastics potentially enhanced their environmental risks. On the other hand, 28-day cultured biofilms on original low-density polyethylene (LDPE) films were dominated by Exiguobacterium. The previously ignored potentials of this microorganism in rapidly accommodating to a hydrophobic substrate and its plastic degrading ability were both worthy of attention. Therefore, it is necessary to consider the weathering process of plastics in exploring the “plastisphere”, and to give further insights into the double-edged nature of the “plastisphere".
显示更多 [+] 显示较少 [-]Distribution and source identification of polychlorinated naphthalenes in bees, bee pollen, and wax from China 全文
2022
Qi, Suzhen | Dong, Shujun | Zhao, Yazhou | Zhang, Su | Zhao, Yin | Liu, Zhaoyong | Zou, Yun | Wang, Peilong | Wu, Liming
Polychlorinated naphthalenes (PCNs) are highly toxic and persistent organic pollutants that can cause adverse effects in the environment and on human health. PCNs have been detected in remote areas because of their long-range transportation. Bees and bee products are commonly used as biomonitors for various pollutants in the environment. However, information on PCNs in apiaries is scarce. The aim of this study was to evaluate the occurrences of PCNs in bees and bee products from apiaries located in different geographical regions of China, and to identify potential pollution sources and assess exposure risks to humans. Our results showed that the average Σ₇₅PCNs concentrations in bees, pollen, and wax were 74.1, 96.3, and 141 pg/g dry weight, respectively. The homologue and congener profiles of PCNs in bees, pollen, and wax were similar, and di- and tri-chlorinated naphthalenes (>60%) were the predominant homologues. The concentrations and distributions of PCNs in bees, pollen, and wax varied among different geographical regions, but their occurrences were correlated with PCN metallurgical sources in China. The health risks of PCNs in pollen were evaluated, and both carcinogenic and non-carcinogenic risks of PCNs exposure to humans through the diet were low.
显示更多 [+] 显示较少 [-]Occurrence, fate and risk assessment of per- and polyfluoroalkyl substances in wastewater treatment plants in Shaanxi, China 全文
2022
Chen, Wenbin | Yang, Fang | Hu, En | Yang, Chenghua | Sun, Changshun | Li, Ming
Wastewater treatment plants (WWTPs) are considered as major sinks for per- and polyfluoroalkyl substances (PFASs). However, conventional WWTPs with low efficiency are also a secondary point source of PFASs entering the environment. Herein, a large-scale investigation of PFASs was conducted in 44 WWTPs throughout Shaanxi Province in the transitional zone between North and South China. The composition profiles of target PFASs differed between wastewater and sludge samples. Perfluorobutanoic acid was dominant in wastewater influent and effluent samples, with maximum concentrations of 59.8 and 11.4 ng/L, respectively. Perfluorooctane sulfonic acid occurred predominantly in sludge samples, with a maximum concentration of 73.2 ng/g. Through wastewater treatment, short-chain PFASs with an even number of carbon atoms were mostly removed, whereas short-chain PFASs with an odd number of carbon atoms were primarily discharged into receiving water. Long-chain PFASs (perfluoroalkyl carboxylic acids: C ≥ 8; perfluoroalkane sulfonic acids: C ≥ 6) were not removed efficiently and secondary production might occur during treatment. Based on the risk quotient, PFASs residues in wastewater effluent posed minimal ecological risk, but the residues in sludge posed low to high potential risk. The mass loadings of PFASs discharged through wastewater and sludge were 15.5 and 3.74 kg/year, respectively, from all WWTPs in Shaanxi Province.
显示更多 [+] 显示较少 [-]Tracing out the effect of transportation infrastructure on NO2 concentration levels with Kernel Density Estimation by investigating successive COVID-19-induced lockdowns 全文
2022
Kovács, Kamill Dániel | Haidu, Ionel
This study aims to investigate the effect of transportation infrastructure on the decrease of NO₂ air pollution during three COVID-19-induced lockdowns in a vast region of France. For this purpose, using Sentinel-5P satellite data, the relative change in tropospheric NO₂ air pollution during the three lockdowns was calculated. The estimation of regional infrastructure intensity was performed using Kernel Density Estimation, being the predictor variable. By performing hotspot–coldspot analysis on the relative change in NO₂ air pollution, significant spatial clusters of decreased air pollution during the three lockdowns were identified. Based on the clusters, a novel spatial index, the Clustering Index (CI) was developed using its Coldspot Clustering Index (CCI) variant as a predicted variable in the regression model between infrastructure intensity and NO₂ air pollution decline. The analysis revealed that during the three lockdowns there was a strong and statistically significant relationship between the transportation infrastructure and the decline index, CCI (r = 0.899, R² = 0.808). The results showed that the largest decrease in NO₂ air pollution was recorded during the first lockdown, and in this case, there was the strongest inverse correlation with transportation infrastructure (r = −0.904, R² = 0.818). Economic and population predictors also explained with good fit the decrease in NO₂ air pollution during the first lockdown: GDP (R² = 0.511), employees (R² = 0.513), population density (R² = 0.837). It is concluded that not only economic-population variables determined the reduction of near-surface air pollution but also the transportation infrastructure. Further studies are recommended to investigate other pollutant gases as predicted variables.
显示更多 [+] 显示较少 [-]Detection of Neonicotinoids in agriculture soil and degradation of thiacloprid through photo degradation, biodegradation and photo-biodegradation 全文
2022
Elumalai, Punniyakotti | Yi, Xiaohui | Chen, Zhenguo | Rajasekar, Aruliah | Brazil de Paiva, Teresa Cristina | Hassaan, Mohamed A. | Ying, Guang-guo | Huang, Mingzhi
The social and ecological influence of Neonicotinoids (NEOs) usage in agriculture sector is progressively higher. There are seven NEOs insecticides widely used for the insects control. Among the NEOs, thiacloprid (THD) was extensively used for insect control during crop cultivation. This study targets to analyse the contamination levels of NEOs in agricultural soil and identify photo-biodegradation of THD degradation using pure isolates and mixed consortium. The photo degradation (PD), biodegradation (BD) and photo-biodegradation (PBD) of THD were compared. The corn field agricultural soils were polluted by four NEOs, among them THD had greater contamination level (surface soil: 3901.2 ± 0.04 μg/g) and (sub-surface soil: 3988.6 ± 0.05 μg/g). Three soil free enriched bacterial strains following Bacillus atrophaeus (PB-2), Priestia megaterium (PB-3) (formerly known as Bacillus megaterium), and Peribacillus simplex (PB-4) (formerly known as Bacillus simplex) were identified by microbiological and molecular 16s rRNA gene sequencing. The PD, BD and PBD of THD were conducted and degradation rate was detected by instrument UPLC-MS-MS. The PBD process with blue-LEDs showed better THD degradation efficiency than PD and BD, where the specific THD degradation rate was 85 ± 0.2%, 87 ± 0.5%, and 89 ± 0.3%, respectively for PB-2, PB-3 and PB-4. Then, the photo-biodegradation performance is greater at 150, 175, 200 rpm, pH 7.0–9.0, and temperature 30–35 °C. After the PBD system deliver four intermediate metabolites, the THD degradation process maybe through nitro reduction, hydroxylation and oxidative cleavage pathway.
显示更多 [+] 显示较少 [-]A cold front induced co-occurrence of O3 and PM2.5 pollution in a Pearl River Delta city: Temporal variation, vertical structure, and mechanism 全文
2022
He, Yuanping | Li, Lei | Wang, Haolin | Xu, Xinqi | Li, Yuman | Fan, Shaojia
In this study, the spatiotemporal variabilities and characteristics of ozone (O₃) and fine particulate matter (PM₂.₅) were reconstructed, and the interaction between meteorological conditions and the co-occurrence of O₃ and PM₂.₅ in Zhuhai, a city in the Pearl River Delta (China), was analysed. The vertical distributions of lower tropospheric O₃, aerosol extinction coefficient, and wind velocity were measured using a ground-based LiDAR system. The diurnal variations in air pollutant concentrations and meteorological conditions at ground level were examined from 28 November to December 8, 2020 considering the weather conditions in Zhuhai. Heavy pollution episodes with increased concentrations of O₃ and PM₂.₅ were observed from 6 to 7 December after a period of cold air invasion. The maximum hourly average concentrations of O₃ and PM₂.₅ at the ground level reached up to 190 μg/m³, 98 μg/m³, respectively. The horizontal wind speed rapidly decreased to less than 2 m/s during the heavy pollution episodes driven by O₃ and PM₂.₅, whereas the vertical wind velocity was dominated by the downdraught. When the large-scale synoptic winds were weak, a strengthening sea breeze in the afternoon could promote the landward propagation of warm marine air masses, and a lower surface wind speed was driven by the convergence of cold air from the north and warm air from the south. In turn, this increased the residence time of air pollutants and promoted their conversion to secondary pollutants. Regarding the pollution sources, the results indicated that the Pearl River Estuary represented a ‘pool’ of O₃ and PM₂.₅ pollution. In addition, the contribution of regional pollutant transport could not be ignored when considering the accumulative increase in air pollution. Overall, the relatively weak synoptic winds, low mixing height, and high generation of pollution around Zhuhai collectively resulted in high concentrations of O₃ and PM₂.₅.
显示更多 [+] 显示较少 [-]Comparison between the mechanisms of Clearfield ® wheat and Lolium rigidum multiple resistant to acetyl CoA carboxylase and acetolactate synthase inhibitors 全文
2022
Vázquez-García, José G. | de Portugal, Joao | Torra, Joel | Osuna, Maria D. | Palma-Bautista, Candelario | Cruz-Hipólito, Hugo E. | De Prado, Rafael
Clearfield® wheat (Triticum aestivum) have helped eliminate the toughest grasses and broadleaf weeds in Spain since 2005. This crop production system includes other tolerant cultivars to the application of imidazolinone (IMI) herbicides. However, the continuous use and off-label rates of IMI herbicides can contribute to the development of resistance in Lolium rigidum and other weed species. In this research, the main objectives were to study the resistance mechanisms to acetolactate synthase (ALS) and acetyl coenzyme A carboxylase (ACCase) inhibitors in a L. rigidum accession (LrR) from a Clearfield® wheat field, with a long history rotating these IMI-tolerant crops and compare them with those present in the IMI-tolerant wheat. The resistance to ACCase inhibitors in LrR was due to point mutations (Ile1781Leu plus Asp2078Gly) of the target site gene plus an enhanced herbicide metabolism (EHM), on the other hand, in wheat accessions was due only by EHM. Mechanisms involved in the resistance to ALS inhibitors were both point mutations of the target gene and EHM in the IMI-tolerant wheat, while only evidence of mutation (Trp574Leu) was found in the multiple herbicide resistant L. rigidum accession. This research demonstrates that if crop rotation is not accompanied by the use of alternative sites of action in herbicide-tolerant crops, resistant weeds to herbicide to which crops are tolerant, can easily be selected. Moreover, repeated and inappropriate use of Clearfield® crops and herbicide rotations can lead to the evolution of multiple resistant weeds, as shown in this study, and have also inestimable environmental impacts.
显示更多 [+] 显示较少 [-]Spatial characteristics of fine particulate matter in subway stations: Source apportionment and health risks 全文
2022
Ji, Wenjing | Zhao, Kaijia | Liu, Chenghao | Li, Xiaofeng
Air in subway stations is typically more polluted than ambient air, and particulate matter concentrations and compositions can vary greatly by location, even within a subway station. However, it is not known how the sources of particulate matter vary between different areas within subway stations, and source-specific health risks in subway stations are unclear. We analyzed the spatial characteristics of particulate matter by source and calculated source-specific health risks on subway platforms and concourses and in station offices by integrating source apportionment with health risk assessments. A total of 182 samples were collected in three areas in six subway stations in Nanjing, China. Enrichment factors and the positive matrix factorization receptor model were used to identify major sources. The carcinogenic and non-carcinogenic health risks to subway workers and passengers were evaluated to determine control priorities. Seven sources of particulate matter were identified in each area, with a total of four subway sources and six outdoor sources over all the areas. The source contributions to total element mass differed significantly from the source contributions to human health risks. Overall, subway sources contributed 48% of total element mass in the station office and 75% and 60% on the concourse and platform, respectively. Subway-derived sources accounted for 54%, 81%, and 71% of non-carcinogenic health risks on station platforms, concourses, and office areas, respectively. The corresponding values for carcinogenic risks were 51%, 86%, and 86%. Among the elements, cobalt had the largest contributions to carcinogenic and non-carcinogenic risks, followed by manganese for non-carcinogenic risks and hexavalent chromium for carcinogenic risks. Reducing emissions from subway sources could effectively protect the health of subway workers and passengers.
显示更多 [+] 显示较少 [-]GCN5-mediated PKM2 acetylation participates in benzene-induced hematotoxicity through regulating glycolysis and inflammation via p-Stat3/IL17A axis 全文
2022
Zhang, Wei | Guo, Xiaoli | Ren, Jing | Chen, Yujiao | Wang, Jingyu | Gao, Ai
Benzene is a common environmental carcinogen that induces leukemia. Studies suggest that metabolic disorder has a relationship with the toxicity of benzene. Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. However, the upstream and downstream regulatory mechanisms of PKM2 in benzene-induced hematotoxicity and the therapeutic effects of targeting PKM2 in vivo are unclear. This study aims to provide insights into the new mechanism of benzene-induced hematotoxicity and reveal the therapeutic significance of targeting PKM2. Herein, we demonstrated that PKM2-dependent glycolysis contributes to benzene-induced hematotoxicity by regulating inflammation reaction. Mechanistically, acetylated proteomics revealed that 1,4-benzoquinone (1,4-BQ) induced acetylation of PKM2 at position K66, and this modification contributed to the increase of PKM2 expression and can be inhibited by inhibition of acetyltransferase GCN5. Meanwhile, the elevated PKM2 was shown to prompt the activation of nuclear phosphorylated Stat3 (p-Stat3) and IL17A. Clinically, pharmacological inhibition of PKM2 alleviated the blood toxicity induced by benzene, which was mainly characterized by an increase in routine blood parameters and improvement of hematopoietic imbalance. Besides, elevated PKM2 is a promising biomarker in people occupationally exposed to benzene. Overall, we identified PKM2/p-Stat3/IL-17A axis participates in the hematotoxicity of benzene, and targeting PKM2 has certain therapeutic implications in hematologic diseases.
显示更多 [+] 显示较少 [-]Refining the diagnostics of non-point source metals pollution to urban lakes based on interaction normalized PMF coupled with Bayesian network 全文
2022
Chang, Xuan | Jia, Ziliang | Feng, Jiashen | Duan, Tingting | Li, Ying-Xia
Spatiotemporal variability complicates source apportionment of metals in urban lakes, especially when rainfall drives urban non-point source pollution. As, Cd, Cr, Pb, Hg, Ag, Co, Cu, Fe, Mn, Ni, Sb, Sr and Zn concentrations in 648 water samples collected before and after rain in 6 urban lakes of Beijing, China were determined during 2013–2015. The response of metals concentrations after rain to the interaction between rainfall and antecedent dry days was significant. Metals concentrations were normalized pursuant to the interaction effect as the input of positive matrix factorization (PMF) to develop the interaction normalized-PMF (IN-PMF). Four primary pollution sources were diagnosed. Sediment release was considered to be the main source of Fe, Co and Ni independent of rainfall. Hg, As and some Cr associated with pesticides and fertilizers were likely to come from soil erosion and runoff from green space. It is probable that road runoff was the dominant source for heavy metals related to traffic emissions, including Pb, Cd, Cu, Sb, Mn and Zn. Cr, Sr and some Cu and Zn as key elements of rooftops can be regarded as from roof runoff. The IN-PMF lowered roof and road runoff contributions and raised the contribution of soil erosion from green space, with Pb, Sb, Cu, Zn, Cd and Mn increasing by 15.9%, 10.7%, 13.1%, 12.2%, 13.3% and 16.8%. The results shed more light on the stormwater runoff pollution mitigation on impervious surfaces and metals enrichment problems in infiltration soil on green space in the low impact development (LID) setting. The Bayesian network revealed the spatial variability of transport and fate of metal elements from land surfaces to urban lakes, supplementing the secondary pollution sources from different land use. This study will provide new insights for source apportionment of non-point source pollution under the background of sponge city construction.
显示更多 [+] 显示较少 [-]