细化搜索
结果 161-170 的 1,956
Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil 全文
2013
Sneath, Helen E. | Hutchings, Tony R. | de Leij, Frans A.A.M.
Sites contaminated with mixtures of metals, metalloids and organics are difficult to remediate as each contaminant type may require a different treatment. Biochar, with high metal sorption capacity, used singly and in combination with iron filings, is investigated in microcosm trials to immobilise metal(loid)s within a contaminated spoil, thereby enabling revegetation and degradation of organic pollutants. A mine spoil, contaminated with heavy metals, arsenic and spiked with phenanthrene was treated with either 1%w/w biochar, 5%w/w iron or their combination, enhancing phenanthrene degradation by 44–65%. Biochar treatment reduced Cu leaching and enabled sunflower growth, but had no significant effect on As mobility. Iron treatment reduced Cu and As leaching but negatively impacted soil structure and released high levels of Fe causing sunflower plant mortality. The combined treatment reduced both Cu and As leaching and enabled sunflower growth suggesting this could be a useful approach for treating co-contaminated sites.
显示更多 [+] 显示较少 [-]A systematic review of the effectiveness of liming to mitigate impacts of river acidification on fish and macro-invertebrates 全文
2013
Mant, Rebecca C. | Jones, David L. | Reynolds, Brian | Ormerod, Steve J. | Pullin, Andrew S.
The addition of calcium carbonate to catchments or watercourses – liming – has been used widely to mitigate freshwater acidification but the abatement of acidifying emissions has led to questions about its effectiveness and necessity. We conducted a systematic review and meta-analysis of the impact of liming streams and rivers on two key groups of river organisms: fish and invertebrates. On average, liming increased the abundance and richness of acid-sensitive invertebrates and increased overall fish abundance, but benefits were variable and not guaranteed in all rivers. Where B-A-C-I designs (before-after-control-impact) were used to reduce bias, there was evidence that liming decreased overall invertebrate abundance. This systematic review indicates that liming has the potential to mitigate the symptoms of acidification in some instances, but effects are mixed. Future studies should use robust designs to isolate recovery due to liming from decreasing acid deposition, and assess factors affecting liming outcomes.
显示更多 [+] 显示较少 [-]The impact of aluminium smelter shut-down on the concentration of fluoride in vegetation and soils 全文
2013
Brougham, Kate M. | Roberts, Stephen R. | Davison, A. (Alan) | Port, Gordon R.
Although a great deal is known about the deposition of fluoride on vegetation, and the hazards associated with uptake by grazing herbivores, little is known about what happens to the concentration of fluoride in vegetation and soil at polluted sites once deposition ceases. The closure of Anglesey Aluminium Metals Ltd smelter, in September 2009, provided a unique opportunity to study fluoride loading once deposition stopped. Fluoride was monitored in plants and soil within 1 km of the former emission source. Fluoride concentrations in a range of plant material had decreased to background levels of 10 mg F kg−1 after 36 weeks. Concentrations of fluoride in mineral-rich soils decreased steadily demonstrating their limited potential to act as contaminating sources of fluoride for forage uptake. There were significant differences in the rate of decline of fluoride concentrations between plant species.
显示更多 [+] 显示较少 [-]Does plant uptake or low soil mineral-N production limit mineral-N losses to surface waters and groundwater from soils under grass in summer? 全文
2013
Bhatti, Ambreen | McClean, Colin J. | Cresser, Malcolm S.
Summer minima and autumn/winter maxima in nitrate concentrations in rivers are reputedly due to high plant uptake of nitrate from soils in summer. A novel alternative hypothesis is tested here for soils under grass. By summer, residual readily mineralizable plant litter from the previous autumn/winter is negligible and fresh litter input low. Consequently little mineral-N is produced in the soil. Water-soluble and KCl-extractable mineral N in fresh soils and soils incubated outdoors for 7 days have been monitored over 12 months for soil transects at two permanent grassland sites near York, UK, using 6 replicates throughout. Vegetation-free soil is shown to produce very limited mineral-N in summer, despite the warm, moist conditions. Litter accumulates in autumn/winter and initially its high C:N ratio favours N accumulation in the soil. It is also shown that mineral-N generated monthly in situ in soil substantially exceeds the monthly mineral-N inputs via wet deposition at the sites.
显示更多 [+] 显示较少 [-]Occurrence and risk assessment of organophosphorus and brominated flame retardants in the River Aire (UK) 全文
2013
Cristale, Joyce | Katsoyiannis, Athanasios | Sweetman, A. J. (Andrew J.) | Jones, K. C. (Kevin C.) | Lacorte, Silvia
This study presents the occurrence and risk of PBDEs, new brominated and organophosphorus flame retardants along a river affected by urban and industrial pressures (River Aire, UK). Tris(2-choroethyl) phosphate (TCEP), tris(2-chloro-1-methylethyl) phosphate (TCPP), tris[2-chloro-1-(chloromethyl)ethyl] phosphate (TDCP) and triphenyl phosphate (TPhP) were detected in all samples, with TCPP present at the highest concentrations, ranging from 113 to 26 050 ng L-1. BDE-209 was detected in most of the sampled sites, ranging from 17 to 295 ng L−1, while hexabromobenzene (HBB) and pentabromoethyl benzene (PBEB) were seldom detected. A risk quotients based on predicted no effect concentrations (PNEC) and flame retardants water concentration proved significant risk for adverse effects for algae, Daphnia and fish in sites close to industrial and urban sewage discharges. This study provides a protocol for the risk estimation of priority and new generation flame retardants based on river concentrations and toxicological values.
显示更多 [+] 显示较少 [-]Lead bioaccessibility in topsoils from lead mineralisation and urban domains, UK 全文
2013
Appleton, J.D. | Cave, M.R. | Palumbo-Roe, B. | Wragg, J.
Predictive linear regression (LR) modelling indicates that total Pb is the only highly significant independent variable for estimating Pb bioaccessibility in “mineralisation domains” located in limestone (high pH) and partly peat covered (low pH) shale-sandstone terrains in England. Manganese is a significant minor predictor in the limestone terrain, whilst organic matter and sulphur explain 0.5% and 2% of the variance of bioaccessible Pb in the peat-shale-sandstone terrain, compared with 93% explained by total Pb. Bootstrap resampling shows that LR confidence limits overlap for the two mineralised terrains but the limestone terrain has a significantly lower bioaccessible Pb to total Pb slope than the urban domain. A comparison of the absolute values of stomach and combined stomach-intestine bioaccessibility provides some insight into the geochemical controls on bioaccessibility in the contrasting soil types.
显示更多 [+] 显示较少 [-]Short- and long-term temporal changes in soil concentrations of selected endocrine disrupting compounds (EDCs) following single or multiple applications of sewage sludge to pastures 全文
2013
Rhind, S.M. | Kyle, C.E. | Ruffie, H. | Calmettes, E. | Osprey, M. | Zhang, Z.L. | Hamilton, D. | McKenzie, C.
Temporal changes in soil burdens of selected endocrine disrupting compounds were determined following application to pasture of either sewage sludge or inorganic fertilizer. Soil polycyclic aromatic hydrocarbon and polychlorinated biphenyl concentrations were not altered. Changes in concentrations of diethylhexyl phthalate (DEHP) and PBDEs 47 and 99 differed with season but concentrations remained elevated for more than three weeks after application, when grazing animals are normally excluded from pasture. It is concluded that single applications of sewage sludge can increase soil concentrations of some, but not all classes of EDCs, possibly to concentrations sufficient to exert biological effects when different chemicals act in combination, but patterns of change depend on season and soil temperature. Analysis of soil from pasture subjected to repeated sludge applications, over 13 years, provided preliminary evidence of greater increases in soil burdens of all of the EDC groups measured, including all of the PBDE congeners measured.
显示更多 [+] 显示较少 [-]Characterization and influence of biochars on nitrous oxide emission from agricultural soil 全文
2013
Wang, Zhenyu | Zheng, Hao | Luo, Ye | Deng, Xia | Herbert, Stephen | Xing, Baoshan
Extensive use of biochar to mitigate N2O emission is limited by the lack of understanding on the exact mechanisms altering N2O emissions from biochar-amended soils. Biochars produced from giant reed were characterized and used to investigate their influence on N2O emission. Responses of N2O emission varied with pyrolysis temperature, and the reduction order of N2O emission by biochar (BC) was: BC200 ≈ BC600 > BC500 ≈ BC300 ≈ BC350 > BC400. The reduced emission was attributed to enhanced N immobilization and decreased denitrification in the biochar-amended soils. The remaining polycyclic aromatic hydrocarbons (PAHs) in low-temperature biochars (300–400 °C) played a major role in reducing N2O emission, but not for high-temperature biochars (500–600 °C). Removal of phenolic compounds from low-temperature (200–400 °C) biochars resulted in a surprising reduction of N2O emission, but the mechanism is still unknown. Overall, adding giant reed biochars could reduce N2O evolution from agricultural soil, thus possibly mitigating global warming.
显示更多 [+] 显示较少 [-]Environmental lead exposure risks associated with children's outdoor playgrounds 全文
2013
Taylor, Mark Patrick | Camenzuli, Danielle | Kristensen, Louise Jane | Forbes, Miriam | Zahran, Sammy
This study examines exposure risks associated with lead smelter emissions at children's public playgrounds in Port Pirie, South Australia. Lead and other metal values were measured in air, soil, surface dust and on pre- and post-play hand wipes. Playgrounds closest to the smelter were significantly more lead contaminated compared to those further away (t(27.545) = 3.76; p = .001). Port Pirie post-play hand wipes contained significantly higher lead loadings (maximum hand lead value of 49,432 μg/m2) than pre-play hand wipes (t(27) = 3.57, p = .001). A 1% increase in air lead (μg/m3) was related to a 0.713% increase in lead dust on play surfaces (95% CI, 0.253–1.174), and a 0.612% increase in post-play wipe lead (95% CI, 0.257–0.970). Contaminated dust from smelter emissions is determined as the source and cause of childhood lead poisoning at a rate of approximately one child every third day.
显示更多 [+] 显示较少 [-]Sorption, dissolution and pH determine the long-term equilibration and toxicity of coated and uncoated ZnO nanoparticles in soil 全文
2013
Waalewijn-Kool, Pauline L. | Diez Ortiz, Maria | Straalen, N. M. van | van Gestel, Cornelis A.M.
To assess the effect of long-term dissolution on bioavailability and toxicity, triethoxyoctylsilane coated and uncoated zinc oxide nanoparticles (ZnO-NP), non-nano ZnO and ZnCl2 were equilibrated in natural soil for up to twelve months. Zn concentrations in pore water increased with time for all ZnO forms but peaked at intermediate concentrations of ZnO-NP and non-nano ZnO, while for coated ZnO-NP such a clear peak only was seen after 12 months. Dose-related increases in soil pH may explain decreased soluble Zn levels due to fixation of Zn released from ZnO at higher soil concentrations. At T = 0 uncoated ZnO-NP and non-nano ZnO were equally toxic to the springtail Folsomia candida, but not as toxic as coated ZnO-NP, and ZnCl2 being most toxic. After three months equilibration toxicity to F. candida was already reduced for all Zn forms, except for coated ZnO-NP which showed reduced toxicity only after 12 months equilibration.
显示更多 [+] 显示较少 [-]