细化搜索
结果 161-170 的 3,991
Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate
2016
Luarte, T. | Bonta, C.C. | Silva-Rodriguez, E.A. | Quijón, P.A. | Miranda, C. | Farias, A.A. | Duarte, C.
The continued growth of human activity and infrastructure has translated into a widespread increase in light pollution. Natural daylight and moonlight cycles play a fundamental role for many organisms and ecological processes, so an increase in light pollution may have profound effects on communities and ecosystem services. Studies assessing ecological light pollution (ELP) effects on sandy beach organisms have lagged behind the study of other sources of disturbance. Hence, we assessed the influence of this stressor on locomotor activity, foraging behavior, absorption efficiency and growth rate of adults of the talitrid amphipod Orchestoidea tuberculata. In the field, an artificial light system was assembled to assess the local influence of artificial light conditions on the amphipod's locomotor activity and use of food patches in comparison to natural (ambient) conditions. Meanwhile in the laboratory, two experimental chambers were set to assess amphipod locomotor activity, consumption rates, absorption efficiency and growth under artificial light in comparison to natural light-dark cycles. Our results indicate that artificial light have significantly adverse effects on the activity patterns and foraging behavior of the amphipods, resulting on reduced consumption and growth rates. Given the steady increase in artificial light pollution here and elsewhere, sandy beach communities could be negatively affected, with unexpected consequences for the whole ecosystem.
显示更多 [+] 显示较少 [-]Does arsenic play an important role in the soil microbial community around a typical arsenic mining area?
2016
Wu, Fan | Wang, Jun-Tao | Yang, Jun | Li, Jing | Zheng, Yuan-Ming
Arsenic (As) can cause serious hazards to human health, especially in mining areas. Soil bacterial communities, which are critical parts of the soil ecosystem, were analyzed directly for soil environmental factors. As a consequence, it is of great significance to understand the ecological risk of arsenic contamination on bacteria, especially at the local scale. In this study, 33 pairs of soil and grain samples were collected from the corn and paddy fields around an arsenic mining area in Shimen County in Hunan Province, China. Significant differences were found between the soil nitrogen, As concentrations, and bacteria activities among these two types of land use. According to the structural equation model (SEM) analysis, compared with other environmental factors, soil As was not the key factor affecting the bacterial community, even when grain As was beyond the threshold of the national food hygiene standards of China. In the corn field, soil pH was the main factor dominating the bacterial richness, composition and grain As. Meanwhile, in the paddy field the soil total nitrogen (TN) and total carbon (TC) were the main factors impacting the bacterial richness, and the bacterial community composition was mainly affected by pH. The interactions between grain As and soil As were weak in the corn field. The bacterial communities played important roles in the food chain risk of As. The local policy of transforming paddy soil to dry land could greatly reduce the health risk of As through the food chain.
显示更多 [+] 显示较少 [-]Human exposure to environmental health concern by types of urban environment: The case of Tel Aviv
2016
Shnell, Itzhak | Potchter, Oded | Yaakov, Yaron | Epstein, Yoram
This study classifies urban environments into types characterized by different exposure to environmental risk factors measured by general sense of discomfort and Heart Rate Variability (HRV). We hypothesize that a set of environmental factors (micro-climatic, CO, noise and individual heart rate) that were measured simultaneously in random locations can provide a better understanding of the distribution of human exposure to environmental loads throughout the urban space than results calculated based on measurements from close fixed stations. We measured micro-climatic and thermal load, CO and noise, individual Heart Rate, Subjective Social Load and Sense of Discomfort (SD) were tested by questionnaire survey.The results demonstrate significant differences in exposure to environmental factors among 8 types of urban environments. It appears that noise and social load are the more significant environmental factors to enhance health risks and general sense of discomfort.
显示更多 [+] 显示较少 [-]Potential toxicity of improperly discarded exhausted photovoltaic cells
2016
Motta, C.M. | Cerciello, R. | De Bonis, S. | Mazzella, V. | Cirino, P. | Panzuto, R. | Ciaravolo, M. | Simoniello, P. | Toscanesi, M. | Trifuoggi, M. | Avallone, B.
Low tech photovoltaic panels (PVPs) installed in the early ’80s are now coming to the end of their life cycle and this raises the problem of their proper disposal. As panels contain potentially toxic elements, unconventional, complex and costly procedures are required to avoid environmental health risks and in countries where environmental awareness and economic resources are limited this may be especially problematic. This work was designed to investigate potential risks from improper disposal of these panels. To accomplish this aim an exhausted panel was broken into pieces and these were placed in water for 30 days. The resulting leached solution was analyzed to determine chemical release or used in toto, to determine its potential toxicity in established tests. The end points were seed germination (on Cucumis sativus and Lens culinaris) and effects on early development in three larval models: two crustaceans, Daphnia magna and Artemia salina, and the sea urchin Paracentrotus lividus. Our results show that the panels release small amounts of electrolytes (Na, Ca and Mg) into solution, along with antimony and manganese, with a concentration under the accepted maximum contaminant level, and nickel at a potentially toxic concentration. Developmental defects are seen in the plant and animal test organisms after experimental exposure to the whole solution leached from the broken panel. The toxic effects revealed in in vitro tests are sufficient to attract attention considering that they are exerted on both plants and aquatic animals and that the number of old PVPs in disposal sites will be very high.
显示更多 [+] 显示较少 [-]Assessment of biological effects of environmental pollution in Mersin Bay (Turkey, northeastern Mediterranean Sea) using Mullus barbatus and Liza ramada as target organisms
2016
Yılmaz, Doruk | Kalay, Mustafa | Dönmez, Erdem | Yılmaz, Nejat
The increasing emphasis on the assessment and monitoring of marine ecosystems has revealed the need to use appropriate biological indicators for these areas. Enzyme activities and histopathology are increasingly being used as indicators of environmental stress since they provide a definite biological end-point of pollutant exposure. As part of an ecotoxicological assessment of Mersin Bay, EROD enzyme activity and histopathological response in selected organs and tissues of two species of fish, Mullus barbatus (red mullet) and Liza ramada (thinlip grey mullet), captured from area were examined. Pollutant (Organochlorines (OC), alkylphenols (APs) and BPA) levels and biomarker responses in tissue samples were evaluated together for their potential to alter the metabolism and cellular aspects in liver and gonad. Elevated induction of EROD activity and histopathological alterations in contaminated samples from Mersin Bay was observed compared to reference site indicating the exposure to potential pollutants.
显示更多 [+] 显示较少 [-]Role of mariculture in the loading and speciation of mercury at the coast of the East China Sea
2016
Liang, Peng | Gao, Xuefei | You, Qiongzhi | Zhang, Jin | Cao, Yucheng | Zhang, Chan | Wong, Ming-Hung | Wu, Sheng-Chun
The effects of mariculture on mercury (Hg) contamination and speciation in water, sediment and cultured fish in a typical mariculture zone located in Xiangshan bay, Zhejiang province, east China, were studied. Water, sediment and fish samples were collected from mariculture sites (MS) and from corresponding reference sites (RS) 2500 m away from the MS. The THg concentration in overlying water in Xiangshan bay reached as high as 16.6 ± 19.5 ng L−1, indicating that anthropogenic sources in this bay may contribution on Hg contamination in overlying water. Mariculture activities resulted in an increase in THg concentration in water from surface and bottom layers, which may be attributed to the discharge of domestic sewage and the accumulation of unconsumed fish feed and fish excreta in the benthic environment. Methylmercury (MeHg) concentrations in the bottom layer of overlying water and top surface layer of porewater underneath MS were higher than at RS, implying that mariculture activities promote Hg methylation in the interface between sediments and water. In addition, the concentrations of MeHg in sediment and porewater were significantly higher in summer than winter. It was observed that THg and MeHg contents in the muscle of blackhead seabream (Acanthopagrus schlegelii) (fed by the trash fish) were significantly higher (p < 0.001) than those in red snapper (Lutjanus campechanus) or perch (Perca fluviatilis) (fed by pellet fish feed). The THg and MeHg concentrations in the fish meat were closely related to the feeding mode, which indicate that fish feed rather than environmental media is the major pathway for Hg accumulation in fish muscle.
显示更多 [+] 显示较少 [-]Environmental pollution of electronic waste recycling in India: A critical review
2016
Awasthi, Abhishek Kumar | Zeng, Xianlai | Li, Jinhui
The rapid growth of the production of electrical and electronic products has meant an equally rapid growth in the amount of electronic waste (e-waste), much of which is illegally imported to India, for disposal presenting a serious environmental challenge. The environmental impact during e-waste recycling was investigated and metal as well as other pollutants [e.g. polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs)] were found in excessive levels in soil, water and other habitats. The most e-waste is dealt with as general or crudely often by open burning, acid baths, with recovery of only a few materials of value. As resulted of these process; dioxins, furans, and heavy metals are released and harmful to the surrounding environment, engaged workers, and also residents inhabiting near the sites. The informal e-waste sectors are growing rapidly in the developing countries over than in the developed countries because of cheapest labor cost and week legislations systems. It has been confirmed that contaminates are moving through the food chain via root plant translocation system, to the human body thereby threatening human health. We have suggested some possible solution toward in which plants and microbes combine to remediate highly contaminated sites.
显示更多 [+] 显示较少 [-]The concentration and changes in freely dissolved polycyclic aromatic hydrocarbons in biochar-amended soil
2016
Oleszczuk, Patryk | Kuśmierz, Marcin | Godlewska, Paulina | Kraska, Piotr | Pałys, Edward
The presence of polycyclic aromatic hydrocarbons (PAHs) in biochars hinders their environmental use. The aim of this study was to determine the freely dissolved (Cfree) PAH content in soil amended with biochar in a long-term (851 days) field experiment. Biochar was added to the soil at a rate of 30 and 45 t/ha. The addition of biochar to the soil resulted in a decrease in Σ13 Cfree PAHs by 25 and 22%, in the soil with the addition of biochar at the rate of 30 and 45 t/ha, respectively. As far as individual PAHs are concerned, in most cases a reduction in Cfree was also observed (from 3.6 to 66%, depending on the biochar rate). During the first 105 days of the experiment, the content of Σ13 Cfree in the biochar-amended soil significantly decreased by 26% (30 t/ha) and 36% (45 t/ha). After this period of time until the end of the experiment, no significant changes in Cfree were observed, regardless of the biochar rate. However, the behavior of individual PAH groups differed depending on the number of rings and experimental treatment. Ultimately, after 851 days of the experiment the content of Σ13 Cfree PAHs was lower by 29% (30 t/ha) and 35% (45 t/ha) compared to the beginning of the study as well as lower by 40% (30 t/ha) and 42% (45 t/ha) than in the control soil. The log KTOC coefficients calculated for the biochar-amended soils were higher immediately after adding biochar and subsequently they gradually decreased, indicating the reduced strength of the interaction between biochar and the studied PAHs. The obtained results show that the addition of biochar to soil does not create a risk in terms of the content of Cfree PAHs.
显示更多 [+] 显示较少 [-]Effects of prenatal exposure to cadmium on neurodevelopment of infants in Shandong, China
2016
Wang, Yiwen | Chen, Limei | Gao, Yu | Zhang, Yan | Wang, Caifeng | Zhou, Yijun | Hu, Yi | Shi, Rong | Tian, Ying
Although animal studies suggested that prenatal cadmium exposure can cause neurodevelopmental deficits, little is explored in human populations, or its mechanism. We investigated the association between prenatal cadmium exposures and infants' developmental quotients (DQs) based on the Gesell Developmental Schedules (gross motor, fine motor, adaptive, language, and social domains) at 12 months of age and explored the role of brain-derived neurotrophic factor (BDNF) in prenatal cadmium-induced neurodevelopmental deficits in Shandong, China, by enrolling 300 mothers between September 2010 and December 2011. Maternal blood cadmium concentration (median, 1.24 μg/L) was negatively associated with social domain DQs and BDNF levels in cord serum. A 10-fold increase in maternal cadmium levels was associated with a 5.70-point decrease in social domain DQs, a 4.31-point decrease in BDNF levels. BDNF levels were positively associated with social domain DQs. These data suggest that prenatal low-level cadmium exposure has adverse effects on neurodevelopment. BDNF may play an important role in the decline of social domain DQs induced by prenatal low-level cadmium exposure.
显示更多 [+] 显示较少 [-]Multifaceted toxicity assessment of catalyst composites in transgenic zebrafish embryos
2016
Jang, Gun Hyuk | Lee, Keon Yong | Choi, Jaewon | Kim, Sang Hoon | Lee, Kwan Hyi
Recent development in the field of nanomaterials has given rise into the inquiries regarding the toxicological characteristics of the nanomaterials. While many individual nanomaterials have been screened for their toxicological effects, composites that accompany nanomaterials are not common subjects to such screening through toxicological assessment. One of the widely used composites that accompany nanomaterials is catalyst composite used to reduce air pollution, which was selected as a target composite with nanomaterials for the multifaceted toxicological assessment. As existing studies did not possess any significant data regarding such catalyst composites, this study focuses on investigating toxicological characteristics of catalyst composites from various angles in both in-vitro and in-vivo settings. Initial toxicological assessment on catalyst composites was conducted using HUVECs for cell viability assays, and subsequent in-vivo assay regarding their direct influence on living organisms was done. The zebrafish embryo and its transgenic lines were used in the in-vivo assays to obtain multifaceted analytic results. Data obtained from the in-vivo assays include blood vessel formation, mutated heart morphology, and heart functionality change. Our multifaceted toxicological assessment pointed out that chemical composites augmented with nanomaterials can too have toxicological threat as much as individual nanomaterials do and alarms us with their danger. This manuscript provides a multifaceted assessment for composites augmented with nanomaterials, of which their toxicological threats have been overlooked.
显示更多 [+] 显示较少 [-]