细化搜索
结果 161-170 的 4,368
Biocontrol activity of effusol from the extremophile plant, Juncus maritimus, against the wheat pathogen Zymoseptoria tritici 全文
2017
Sahli, Ramla | Rivière, Céline | Siah, Ali | Smaoui, Abderrazak | Samaillie, Jennifer | Hennebelle, Thierry | Roumy, Vincent | Ksouri, Riadh | Halama, Patrice | Sahpaz, Sevser | BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL)
International audience
显示更多 [+] 显示较少 [-]Individual and mixture acute toxicity of model pesticides chlordecone and pyriproxyfen in the estuarine copepod Eurytemora affinis 全文
2017
Legrand, Elena | Boulange-Lecomte, Céline | Restoux, Gwendal | Trémolet, Gauthier | Duflot, Aurélie | Forget-Leray, Joëlle | Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO) ; Institut National de l'Environnement Industriel et des Risques (INERIS)-Université de Reims Champagne-Ardenne (URCA)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-SFR Condorcet ; Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS) | Génétique Animale et Biologie Intégrative (GABI) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
Individual and mixture acute toxicity of model pesticides chlordecone and pyriproxyfen in the estuarine copepod Eurytemora affinis 全文
2017
Legrand, Elena | Boulange-Lecomte, Céline | Restoux, Gwendal | Trémolet, Gauthier | Duflot, Aurélie | Forget-Leray, Joëlle | Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO) ; Institut National de l'Environnement Industriel et des Risques (INERIS)-Université de Reims Champagne-Ardenne (URCA)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-SFR Condorcet ; Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS) | Génétique Animale et Biologie Intégrative (GABI) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
International audience | Due to the increase in the use of phytosanitary products during the last few decades, the importance to study the effect of pesticide mixtures has been established. In this study, we investigated the acute toxicity of two model insecticides, chlordecone (CLD) and pyriproxyfen (PXF), alone and in mixtures, in the estuarine copepod Eurytemora affinis. After 48 h of exposure, the relative LC50 were 73.24 and 131.61 μg/L for PXF and CLD, respectively. The lower concentration tested (10 μg/L) did not affect the mortality of E. affinis whatever the considered chemical compound. To understand the interaction between compounds in mixture, the results were fitted to the concentration addition, Vølund, and Hewlett models. The best fit was obtained with the Hewlett model, suggesting a synergistic effect of the mixture.
显示更多 [+] 显示较少 [-]Individual and mixture acute toxicity of model pesticides chlordecone and pyriproxyfen in the estuarine copepod Eurytemora affinis 全文
2017
Legrand, Elena | Boulangé-Lecomte, Céline | Restoux, Gwendal | Trémolet, Gauthier | Duflot, Aurélie | Forget-Leray, Joëlle
Due to the increase in the use of phytosanitary products during the last few decades, the importance to study the effect of pesticide mixtures has been established. In this study, we investigated the acute toxicity of two model insecticides, chlordecone (CLD) and pyriproxyfen (PXF), alone and in mixtures, in the estuarine copepod Eurytemora affinis. After 48 h of exposure, the relative LC50 were 73.24 and 131.61 μg/L for PXF and CLD, respectively. The lower concentration tested (10 μg/L) did not affect the mortality of E. affinis whatever the considered chemical compound. To understand the interaction between compounds in mixture, the results were fitted to the concentration addition, Vølund, and Hewlett models. The best fit was obtained with the Hewlett model, suggesting a synergistic effect of the mixture.
显示更多 [+] 显示较少 [-]Sublethal effect assessment of a low-power and dual-frequency anti-cyanobacterial ultrasound device on the common carp (Cyprinus carpio): a field study 全文
2017
Techer, Didier | Milla, Sylvain | Banas, Damien | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Region Grand-Est | SO.GE.EAU
Sublethal effect assessment of a low-power and dual-frequency anti-cyanobacterial ultrasound device on the common carp (Cyprinus carpio): a field study 全文
2017
Techer, Didier | Milla, Sylvain | Banas, Damien | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Region Grand-Est | SO.GE.EAU
International audience | The use of ultrasonication for cyanobacterial control in freshwater bodies has become increasingly popular during the last decades despite controversial efficiency on large scale application. Apart from that, little information is currently available regarding ultrasound toxicity potential towards non-target species. This work was designed to address this issue in the common carp using a low-power (7–9 W output) and dual-frequency (23 and 46 kHz) anti-cyanobacterial ultrasound device. Results showed that carps were unaffected by ultrasound exposure when exposed in floating cages in fish ponds over a 30-day period. The experiment duration was the main factor influencing all measured biological parameters in exposed and non-exposed organisms. Indeed, it was positively associated with an increase in fish condition factor. Cortisol level also tended to slightly increase over the number of days of experiment but its variation did not enable to sort out any ultrasound exposure-related stress. Moreover, an overall diminution along the experimental period of the expression level of a set of biomarkers could be reported, encompassing cellular antioxidant enzyme activities such as superoxide dismutase (SOD), glutathione peroxydase (GPx), catalase and glutathione S-transferase (GST), and lactate dehydrogenase activity. Subtle changes in these biomarkers were dependent of the type of enzyme activity and especially of the origin of fish (i.e., sampled pond) regardless of the presence of ultrasound equipment, reflecting thereby fish adaptation to local environmental conditions in each pond. In conclusion, this study does not provide indication that ultrasonication in the aforementioned conditions affects the welfare and physiological homeostasis of carps.
显示更多 [+] 显示较少 [-]Sublethal effect assessment of a low-power and dual-frequency anti-cyanobacterial ultrasound device on the common carp (Cyprinus carpio): a field study 全文
2017
Techer, Didier | Milla, Sylvain | Banas, Damien
The use of ultrasonication for cyanobacterial control in freshwater bodies has become increasingly popular during the last decades despite controversial efficiency on large scale application. Apart from that, little information is currently available regarding ultrasound toxicity potential towards non-target species. This work was designed to address this issue in the common carp using a low-power (7–9 W output) and dual-frequency (23 and 46 kHz) anti-cyanobacterial ultrasound device. Results showed that carps were unaffected by ultrasound exposure when exposed in floating cages in fish ponds over a 30-day period. The experiment duration was the main factor influencing all measured biological parameters in exposed and non-exposed organisms. Indeed, it was positively associated with an increase in fish condition factor. Cortisol level also tended to slightly increase over the number of days of experiment but its variation did not enable to sort out any ultrasound exposure-related stress. Moreover, an overall diminution along the experimental period of the expression level of a set of biomarkers could be reported, encompassing cellular antioxidant enzyme activities such as superoxide dismutase (SOD), glutathione peroxydase (GPx), catalase and glutathione S-transferase (GST), and lactate dehydrogenase activity. Subtle changes in these biomarkers were dependent of the type of enzyme activity and especially of the origin of fish (i.e., sampled pond) regardless of the presence of ultrasound equipment, reflecting thereby fish adaptation to local environmental conditions in each pond. In conclusion, this study does not provide indication that ultrasonication in the aforementioned conditions affects the welfare and physiological homeostasis of carps.
显示更多 [+] 显示较少 [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) | Modélisation intégrée de scénarios agricoles (IMAS) pour l'aide à la décision publique : le cas de l'aire d'alimentation de captage de Coulonge St Hippolyte (SO France) 全文
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P. | Environnement, territoires et infrastructures (UR ETBX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | CHAMBRE REGIONALE D'AGRICULTURE MIGNALOUX BEAUVOIR FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) | Modélisation intégrée de scénarios agricoles (IMAS) pour l'aide à la décision publique : le cas de l'aire d'alimentation de captage de Coulonge St Hippolyte (SO France) 全文
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P. | Environnement, territoires et infrastructures (UR ETBX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | CHAMBRE REGIONALE D'AGRICULTURE MIGNALOUX BEAUVOIR FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Territoires [TR1_IRSTEA]DTAM [Axe_IRSTEA]DTAM-QT2-ADAPTATION [TR2_IRSTEA]SYNERGIE | International audience | Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
显示更多 [+] 显示较少 [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) | Modélisation intégrée de scénarios agricoles (IMAS) pour l'aide à la décision publique : le cas de l'aire d'alimentation de captage de Coulonge St Hippolyte (SO France) 全文
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P. | Environnement, territoires et infrastructures (UR ETBX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | CHAMBRE REGIONALE D'AGRICULTURE MIGNALOUX BEAUVOIR FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Territoires [TR1_IRSTEA]DTAM [Axe_IRSTEA]DTAM-QT2-ADAPTATION [TR2_IRSTEA]SYNERGIE | International audience | Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
显示更多 [+] 显示较少 [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) 全文
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P.
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
显示更多 [+] 显示较少 [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) 全文
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sébastien | Miralles, André | Barberis, Delphine | Scordia, Charlotte | Kuentz-Simonet, Vanessa | Tonneau, Jean-Philippe
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
显示更多 [+] 显示较少 [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) 全文
2017
Vernier F. | Leccia-Phelpin O. | Lescot J.M. | Minette S. | Miralles A. | Barberis D. | Scordia C. | Kuentz-Simonet V. | Tonneau J.P.
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economi
显示更多 [+] 显示较少 [-]Tolerance of Japanese knotweed s.l. to soil artificial polymetallic pollution: early metabolic responses and performance during vegetative multiplication 全文
2017
Michalet, Serge | Rouifed, Soraya | Pellassa-Simon, Thomas | Fusade-Boyer, Manon | Meiffren, Guillaume | Nazaret, Sylvie | Piola, Florence | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | Équipe 2 - Écologie Végétale et Zones Humides (EVZH) ; Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS) | Initiative Structurante EC2CO (Ecosphere Continentale et Cotiere); ECODYN (Ecotoxicologie, Ecodynamique des contaminants); FR3728 BioEnviS
International audience | The expansion of invasive Japanese Knotweed s.l. is of particular concern because of its aptitudes to rapidly colonize diverse environments, especially anthropized habitats generally characterized by their pollution with heavy metals. Whether the presence of heavy metals impacts the performance traits of this plant is a central question to better understand its invasive properties, though no controlled approach to assess these effects were yet reported. In this aim, we undertook greenhouse experiments where rhizome fragments of Japanese Knotweed s.l. (Fallopia japonica and Fallopia x bohemica) were grown during 1 and 3 months, in soil pot artificially polluted or not with heavy metals added in mixture (Cd, Cr, Pb, Zn). Our results showed that (i) the presence of heavy metals delayed rhizome regeneration and induced lowered plant part weights but did not affect plant height after three months; (ii) the effect of metals on the metabolic profiles of belowground part extracts was only detectable after 1 month and not after 3 months of growth, though, it was possible to highlight the effect of metals independently of time and genotype for root extracts, and torosachrysone seemed to be the most induced compound; (iii) the hybrid genotype tested was able to accumulate relatively high concentrations of metals, over or close to the highest reported ones for this plant for Cr, Cd and Zn, whereas Pb was not accumulated. These findings evidence that the presence of heavy metals in soil has a low impact on Fallopia spp. overall performance traits during rhizome regeneration, and has a rather stimulating effect on plant growth depending on pollution level.
显示更多 [+] 显示较少 [-]Observed volatilization fluxes of S-metolachlor and benoxacor applied on soil with and without crop residues 全文
2017
Bedos, Carole | Alletto, Lionel | Durand, Brigitte | Fanucci, Olivier | Brut, Aurore | Deschamps, Marjolaine | Giuliano, Simon | Loubet, Benjamin | Ceschia, Eric | Benoit, Pierre | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | AGroécologie, Innovations, teRritoires (AGIR) ; Institut National de la Recherche Agronomique (INRA)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT) | Centre d'études spatiales de la biosphère (CESBIO) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut Universitaire de Technologie - Paul Sabatier (IUT Paul Sabatier) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT) | Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)
Observed volatilization fluxes of S-metolachlor and benoxacor applied on soil with and without crop residues 全文
2017
Bedos, Carole | Alletto, Lionel | Durand, Brigitte | Fanucci, Olivier | Brut, Aurore | Deschamps, Marjolaine | Giuliano, Simon | Loubet, Benjamin | Ceschia, Eric | Benoit, Pierre | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | AGroécologie, Innovations, teRritoires (AGIR) ; Institut National de la Recherche Agronomique (INRA)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT) | Centre d'études spatiales de la biosphère (CESBIO) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut Universitaire de Technologie - Paul Sabatier (IUT Paul Sabatier) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT) | Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)
Volatilization may represent a major dissipation pathway for pesticides applied to soils or crops, and these losses may be modified by soil surface conditions or in the presence of plant residues. This paper investigates the effect of surface conditions on volatilization through experimental results. The two experiments consisted of volatilization flux measurements for 3 days after an application of S-metolachlor together with benoxacor: one with two wind tunnels to compare the effect of the presence of crop residues on the soil on volatilization losses and another one at the field scale from bare soil without crop residues. Volatilization fluxes were large immediately after application (between 77 and 223 ng m−2 s−1 for S-metolachlor depending on experimental conditions), decreasing down to a few nanograms per square meter per second on the last day. Volatilization fluxes followed a diurnal cycle driven by environmental conditions. The losses found for both compounds were in accordance with their physicochemical properties. The crop residue on the soil surface modified soil surface conditions—primarily the soil water content essentially, the degradation of S-metolachlor, and the dynamics of volatilization loss.
显示更多 [+] 显示较少 [-]Observed volatilization fluxes of S-metolachlor and benoxacor applied on soil with and without crop residues 全文
2017
Bedos, C. | Alletto, L. | Durand, B. | Fanucci, O. | Brut, A. | Bourdat-Deschamps, M. | Giuliano, S. | Loubet, B. | Ceschia, E. | Benoit, P.
Volatilization may represent a major dissipation pathway for pesticides applied to soils or crops, and these losses may be modified by soil surface conditions or in the presence of plant residues. This paper investigates the effect of surface conditions on volatilization through experimental results. The two experiments consisted of volatilization flux measurements for 3 days after an application of S-metolachlor together with benoxacor: one with two wind tunnels to compare the effect of the presence of crop residues on the soil on volatilization losses and another one at the field scale from bare soil without crop residues. Volatilization fluxes were large immediately after application (between 77 and 223 ng m⁻² s⁻¹ for S-metolachlor depending on experimental conditions), decreasing down to a few nanograms per square meter per second on the last day. Volatilization fluxes followed a diurnal cycle driven by environmental conditions. The losses found for both compounds were in accordance with their physicochemical properties. The crop residue on the soil surface modified soil surface conditions—primarily the soil water content essentially, the degradation of S-metolachlor, and the dynamics of volatilization loss.
显示更多 [+] 显示较少 [-]Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity 全文
2017
Colbach, Nathalie | Darmency, Henri | Fernier, Alice | Granger, Sylvie | Le Corre, Valérie | Messean, Antoine | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Unité Impacts Ecologiques des Innovations en Production Végétale (ECO-INNOV) ; Institut National de la Recherche Agronomique (INRA) | INRA, the European project AMIGA (Assessing and Monitoring Impacts of Genetically modified plants on Agro-ecosystems) [FP7-KBBE-2011-5-CP-CSA]; French project CoSAC [ANR-14-CE18-0007]; research programme "Assessing and reducing environmental risks from plant protection products" - French Ministry in charge of Ecology; research programme "Assessing and reducing environmental risks from plant protection products" - French Ministry in charge of Agriculture | ANR-14-CE18-0007,CoSAC,Conception de Stratégies durables de gestion des Adventices dans un contexte de Changement (climat, pratiques agricoles, biodiversité)(2014)
Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity 全文
2017
Colbach, Nathalie | Darmency, Henri | Fernier, Alice | Granger, Sylvie | Le Corre, Valérie | Messean, Antoine | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Unité Impacts Ecologiques des Innovations en Production Végétale (ECO-INNOV) ; Institut National de la Recherche Agronomique (INRA) | INRA, the European project AMIGA (Assessing and Monitoring Impacts of Genetically modified plants on Agro-ecosystems) [FP7-KBBE-2011-5-CP-CSA]; French project CoSAC [ANR-14-CE18-0007]; research programme "Assessing and reducing environmental risks from plant protection products" - French Ministry in charge of Ecology; research programme "Assessing and reducing environmental risks from plant protection products" - French Ministry in charge of Agriculture | ANR-14-CE18-0007,CoSAC,Conception de Stratégies durables de gestion des Adventices dans un contexte de Changement (climat, pratiques agricoles, biodiversité)(2014)
Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FlorSys; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.
显示更多 [+] 显示较少 [-]Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity 全文
2017
Colbach, Nathalie | Darmency, Henri | Fernier, Alice | Granger, Sylvie | Le Corre, Valérie | Messéan, Antoine
Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.
显示更多 [+] 显示较少 [-]Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds 全文
2017
Colbach, Nathalie | Fernier, Alice | Le Corre, Valérie | Messean, Antoine | Darmency, Henri | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Unité Impacts Ecologiques des Innovations en Production Végétale (ECO-INNOV) ; Institut National de la Recherche Agronomique (INRA) | ANR-14-CE18-0007,CoSAC,Conception de Stratégies durables de gestion des Adventices dans un contexte de Changement (climat, pratiques agricoles, biodiversité)(2014)
Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds 全文
2017
Colbach, Nathalie | Fernier, Alice | Le Corre, Valérie | Messean, Antoine | Darmency, Henri | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Unité Impacts Ecologiques des Innovations en Production Végétale (ECO-INNOV) ; Institut National de la Recherche Agronomique (INRA) | ANR-14-CE18-0007,CoSAC,Conception de Stratégies durables de gestion des Adventices dans un contexte de Changement (climat, pratiques agricoles, biodiversité)(2014)
EASPEGESTADSUPDATINRACT1EJ2 INRA | Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FLORSYS model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.
显示更多 [+] 显示较少 [-]Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds 全文
2017
Colbach, Nathalie | Fernier, Alice | Le Corre, Valérie | Messéan, Antoine | Darmency, Henri
Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FLORSYS model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28 years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.
显示更多 [+] 显示较少 [-]Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France) 全文
2017
Gentès, Sophie | Taupiac, Julie | Colin, Yannick | André, Jean-Marc | Guyoneaud, Remy | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Interactions Arbres-Microorganismes (IAM) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Ecole Nationale Supérieure de Cognitique (ENSC) ; Institut Polytechnique de Bordeaux | Laboratoire de l'intégration, du matériau au système (IMS) ; Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS) | COGNITIQUE ; Laboratoire de l'intégration, du matériau au système (IMS) ; Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS) | Institut Polytechnique de Bordeaux (Bordeaux INP) | Conseil Général des Landes; DIRECT project (Les microorganismes sulfato-réducteurs colonisant les racines de macrophytes aquatiques: DIversité et Risques liés à la méthylation du mErcure et son transfert vers la Chaîne Trophique)
cited By 0 | International audience | Macrophyte floating roots are considered as hotspots for methylmercury (MeHg) production in aquatic ecosystems through microbial activity. Nevertheless, very little is known about periphyton bacterial communities and mercury (Hg) methylators in such ecological niches. The ability to methylate inorganic Hg is broadly distributed among prokaryotes; however, sulfate-reducers have been reported to be the most important MeHg producers in macrophyte floating roots. In the present work, the periphyton bacterial communities colonizing Ludwigia sp. floating roots were investigated through molecular methods. Among the 244 clones investigated, anaerobic microorganisms associated with the sulfur biogeochemical cycle were identified. Notably, members of the sulfur-oxidizing prokaryotes and the anoxygenic, purple non-sulfur bacteria (Rhodobacteraceae, Comamonadaceae, Rhodocyclaceae, Hyphomicrobiaceae) and the sulfate reducers (Desulfobacteraceae, Syntrophobacteraceae, and Desulfobulbaceae) were detected. In addition, 15 sulfate-reducing strains related to the Desulfovibrionaceae family were isolated and their Hg-methylation capacity was tested using a biosensor. The overall results confirmed that Hg methylation is a strain-specific process since the four strains identified as new Hg-methylators were closely related to non-methylating isolates. This study highlights the potential involvement of periphytic bacteria in Hg methylation when favorable environmental conditions are present in such ecological micro-niches.
显示更多 [+] 显示较少 [-]Agricultural effluent treatment in biobed systems using novel substrates from southeastern Mexico: the relationship with physicochemical parameters of biomixtures 全文
2017
Góngora-Echeverría, Virgilio René | Martin-Laurent, Fabrice | Quintal-Franco, Carlos | Giácoman-Vallejos, German | Ponce-Caballero, Carmen | Instituto de Ingeniería Eléctrica [Montevideo] (IIE) ; Facultad de Ingenieria [Montevideo] ; Universidad de la República de Uruguay = University of the Republic of Uruguay [Montevideo] (UDELAR)-Universidad de la República de Uruguay = University of the Republic of Uruguay [Montevideo] (UDELAR) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)
Agricultural effluent treatment in biobed systems using novel substrates from southeastern Mexico: the relationship with physicochemical parameters of biomixtures 全文
2017
Góngora-Echeverría, Virgilio René | Martin-Laurent, Fabrice | Quintal-Franco, Carlos | Giácoman-Vallejos, German | Ponce-Caballero, Carmen | Instituto de Ingeniería Eléctrica [Montevideo] (IIE) ; Facultad de Ingenieria [Montevideo] ; Universidad de la República de Uruguay = University of the Republic of Uruguay [Montevideo] (UDELAR)-Universidad de la República de Uruguay = University of the Republic of Uruguay [Montevideo] (UDELAR) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)
EABIOmE INRA | Misuse of pesticides in farming activities leads to contamination of drinking water sources and is responsible for animal and human health problems. The biobeds are practicable option to minimize contamination by pesticides during preparation, use and washing of equipment for pesticide treatments. This research aimed at testing substrate mixtures to optimize biobed efficiency to remove pesticides under the climate of the Yucatan (México). Agricultural soil and 11 mixtures adding vegetable compost, sisal pulp, corn stover and seaweed were tested under controlled conditions. Each biomixture was exposed to a mixture of five pesticides (2,4-diclorophenoxyacetic acid “2,4-D” [1.08 mg cm−3], atrazine [2.50 mg cm−3], carbofuran [0.23 mg cm−3], diazinon [0.34 mg cm−3], and glyphosate [0.36 mg cm−3]) in a period of 41 days. Monitoring of the dissipation of pesticide residues showed that pesticides were quickly dissipated in soil at microcosm level experiment, while at two critical times of 20 and 41 days, all mixtures of substrates (biomixtures) were efficient in dissipation of high concentrations of pesticide in a short time (>99%). Time, biomixture and type of pesticide were shown to be the main parameters influencing pesticide dissipation (P < 0.05). Several other physicochemical parameters of the biomixtures, such as organic matter (OM), lignin, water holding capacity (WHC), and pH, were also significant on pesticide dissipation (P < 0.05), being pH the most significant.
显示更多 [+] 显示较少 [-]Agricultural effluent treatment in biobed systems using novel substrates from southeastern Mexico: the relationship with physicochemical parameters of biomixtures 全文
2017
Góngora-Echeverría, Virgilio René | Martin-Laurent, Fabrice | Quintal-Franco, Carlos | Giácoman Vallejos, Germán | Ponce-Caballero, Carmen
Misuse of pesticides in farming activities leads to contamination of drinking water sources and is responsible for animal and human health problems. The biobeds are practicable option to minimize contamination by pesticides during preparation, use and washing of equipment for pesticide treatments. This research aimed at testing substrate mixtures to optimize biobed efficiency to remove pesticides under the climate of the Yucatan (México). Agricultural soil and 11 mixtures adding vegetable compost, sisal pulp, corn stover and seaweed were tested under controlled conditions. Each biomixture was exposed to a mixture of five pesticides (2,4-diclorophenoxyacetic acid “2,4-D” [1.08 mg cm⁻³], atrazine [2.50 mg cm⁻³], carbofuran [0.23 mg cm⁻³], diazinon [0.34 mg cm⁻³], and glyphosate [0.36 mg cm⁻³]) in a period of 41 days. Monitoring of the dissipation of pesticide residues showed that pesticides were quickly dissipated in soil at microcosm level experiment, while at two critical times of 20 and 41 days, all mixtures of substrates (biomixtures) were efficient in dissipation of high concentrations of pesticide in a short time (>99%). Time, biomixture and type of pesticide were shown to be the main parameters influencing pesticide dissipation (P < 0.05). Several other physicochemical parameters of the biomixtures, such as organic matter (OM), lignin, water holding capacity (WHC), and pH, were also significant on pesticide dissipation (P < 0.05), being pH the most significant.
显示更多 [+] 显示较少 [-]