细化搜索
结果 1611-1620 的 3,201
Advanced Oxidation Treatment of Recalcitrant Wastewater from a Wood-Based Industry: a Comparative Study of O3 and O3/UV
2015
Hansson, Henrik | Kaczala, Fabio | Amaro, Alexandre | Marques, M. (Marcia) | Hogland, William
Ozone and ozone-based advanced oxidation processes were applied for the treatment of a recalcitrant wastewater generated by wood-based industries that contains different inorganic and organic constituents and high chemical oxygen demand (COD) varying between 3,400 and 4,000 mg/L. The investigation used a tubular ozone reactor combined with an UV reactor designed for different hydraulic retention times. The dependent variables addressed to evaluate the treatment efficiency were the reduction of COD and total organic carbon (TOC) and the biodegradability of the treated effluent based on respirometric studies using activated sludge from a wastewater treatment. The results showed that even though ozonation alone at acid pH promoted COD and TOC reductions of 65 and 31 % respectively, a decrease in the biodegradability was observed. The most effective treatment (COD and TOC reductions of 93 and 43 %, respectively) was obtained when applying ozone combined with UV light at basic pH. The ozone-UV combination was capable of increasing the amount of readily available COD by 75 % with an additional reduction of TOC by 60 %. In conclusion, ozonation at low pH effectively reduces the COD content in wastewater generated by the wood-based industry; however, in order to combine advanced oxidation with biological process, ozone combined with UV is recommended.
显示更多 [+] 显示较少 [-]Rapid MPN-Qpcr Screening for Pathogens in Air, Soil, Water, and Agricultural Produce
2015
Orlofsky, Ezra | Benami, Maya | Gross, Amit | Dutt, Michelle | Gillor, Osnat
A sensitive, high-throughput, and cost-effective method for screening bacterial pathogens in the environment was developed. A variety of environmental samples, including aerosols, soil of various types (sand, sand/clay mix, and clay), wastewater, and vegetable surface (modeled by tomato), were concomitantly spiked with Salmonella enterica and/or Pseudomonas aeruginosa to determine recovery rates and limits of detection. The various matrices were first enriched with a general pre-enrichment broth in a dilution series and then enumerated by most probable number (MPN) estimation using quantitative PCR for rapid screening of amplicon presence. Soil and aerosols were then tested in non-spiked environmental samples, as these matrices are prone to large experimental variation. Limit of detection in the various soil types was 1–3 colony-forming units (CFU) g⁻¹; on vegetable surface, 5 CFU per tomato; in treated wastewater, 5 CFU L⁻¹; and in aerosols, >300 CFU mL⁻¹. Our method accurately identified S. enterica in non-spiked environmental soil samples within a day, while traditional methods took 4 to 5 days and required sorting through biochemically and morphologically similar species. Likewise, our method successfully identified P. aeruginosa in non-spiked aerosols generated by a domestic wastewater treatment system. The obtained results suggest that the developed method presents a broad approach for the rapid, efficient, and reliable detection of relatively low densities of pathogenic organisms in challenging environmental samples.
显示更多 [+] 显示较少 [-]Removal of Ammonium and 4-Methylphenol from Synthetic Wastewater by Cell-Free Extracts of Nitrifying Sludge
2015
Covarrubias-Vallejo, J. | González-Blanco, G. | Prado-Barragán, A. | Beristain-Cardoso, R.
The feasibility of using cell-free extracts of nitrifying sludge to treat synthetic wastewater containing 4-methylphenol and ammonium was examined. Nitrifying cells were broken by sonication and encapsulated into calcium alginate. Cell-free extracts (CFE) of nitrifying sludge oxidized 4-methylphenol threefold faster than whole-cells, but CFE were not able to oxidize ammonium. The CFE encapsulated into calcium alginate (CFEA) displayed partial nitrification and 4-methylphenol oxidation. Five hours was enough to oxidize 100 % of ammonium and 4-methylphenol, at volumetric rates of 20.80 mg N/L h and 42.86 mg C/L h, respectively. It is inferred that an interaction between the CFE and calcium alginate resulted in the protection of the enzymes.
显示更多 [+] 显示较少 [-]Experimental Design and Process Optimization for Uranium Polluted Soils Decontamination by Acid Washing
2015
Radu, Aura Daniela | Panturu, Eugenia | Woinaroschy, Alexandru | Isopescu, Raluca
Uranium soil depollution is of great concern as, like any other radionuclide, it may accumulate in time and generate a negative impact on human health. There are several decontamination technologies, among these the acid washing still in use for its simplicity and low cost. Though a classical method, it still can be improved by using the best operating conditions to increase the decontamination degree. The present study aims to propose an optimization approach based on experimental design. The investigation takes into account the main operating parameters (duration, temperature, and pH) and the soil characteristics (texture and organic matter content). This work presents an “ex situ” uranium-contaminated soil treatment using a 0.1 M H₂SO₄solution with pulp density of 0.5. The experiments followed a 2³factorial design for the evaluation of factors and interaction effects. The factors’ influence differed from one type of soil to another. The 2³experiment was augmented using a non-central composite design that allowed the formulation of a second degree model for the response surface. The best values for the operating parameters were identified using optimization procedures. Statistical modelling and optimization were performed in Matlab® v7.7. The results obtained proved that the soil type is very important for selecting better operating conditions. These improvements determined an increased decontamination degree of up to 10–13 % compared with standard operating conditions that were considered as central point in the experimental plan.
显示更多 [+] 显示较少 [-]Conception of the Mercury Deposition Coefficient Based on Long-term Stream Intensity Measurements of Mercury Species TGM and TPM
2015
Nowak, Bartosz | Czaplicka, Marianna
For many years, atmospheric mercury has been perceived as a global pollutant. Transport of mercury compounds in the atmosphere and its deposition on the earth’s surface is an important issue that requires knowledge regarding the circulation of the various forms of this metal between environmental components. There are many numerical models that can be used to study and image this phenomenon. These models are based on data concerning mercury emission sources, concentrations of this contaminant on modelling areas and meteorological data to assess air mass inflow on a regional and global scale. A method to assess mercury deposition fluxes on a local scale based only on stream intensity analysis of mercury is proposed in this study. Mercury deposition fluxes (bulk) that were assessed by the MDC method at the Zloty Potok station (regional background station for the Silesian Agglomeration) varied from 22.8 μg · m⁻² · year⁻¹ (an 8-month period in 2013) to 54.2 μg · m⁻² · year⁻¹ in 2012. Developing procedures to estimate the mercury deposition coefficient (MDC) is useful in areas where only meteorological parameters and mercury concentrations in the atmospheric air are measured. The obtained deposition coefficient values enable quantification of a selected pollutant concentration and its potential impact resulting from deposition.
显示更多 [+] 显示较少 [-]Pilot-Scale Investigation of Micropollutant Removal with Granular and Powdered Activated Carbon
2015
Meinel, F. | Ruhl, A. S. | Sperlich, A. | Zietzschmann, F. | Jekel, M.
Activated carbon is investigated as adsorptive barrier for organic micropollutants (OMP) within the Berlin water cycle. In a pilot plant using granular activated carbon (GAC) as upper layer in dual-media filtration, OMP concentrations in treated wastewater could be reduced without any negative impact on filtration efficiency. OMP breakthroughs occurred after shorter runtimes than estimated according to isotherm experiments with powdered activated carbon (PAC). Batch adsorption tests comparing the used GAC to new GAC showed that the capacity of the used GAC was not exhausted, indicating that besides direct site competition, pore blocking is also responsible for the poor GAC performance. A pilot plant application of PAC of the same type as GAC showed significantly higher OMP removals at lower dosages, taking advantage of immobilization of PAC particles in the filters. Both PAC and GAC applications can be integrated into tertiary wastewater treatment without significant constructional changes.
显示更多 [+] 显示较少 [-]Electro Coagulation Removal of As from Water: the Role of Phases Formation
2015
Maldonado-Reyes, A. | Montero-Ocampo, C. | Medina-Garcia, J. | Bolado-Rodríguez, S. | Alvárez-Benedí, J. | Herrera-Vazquez, A. | Castaño, V. M.
The adsorbents (such as hydrous ferric oxides, HFO) generated in the electrocoagulation (EC) processing with iron electrodes are able to remove effectively inorganic arsenic (As) present in underground water. A characterization of the HFO phases produced during the arsenic removal by the EC process from low and high arsenic concentration, by using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM), is presented. The main HFO phase produced by this process is lepidocrocite (γ-FeOOH), and that the sorption of arsenic by this solid-state phase formed as part of the EC process was effective in removing arsenic from aqueous solution.
显示更多 [+] 显示较少 [-]The Influence of Different Pavement Surfaces on Atmospheric Copper, Lead, Zinc, and Suspended Solids Attenuation and Wash-Off
2015
Murphy, Louise U. | Cochrane, Thomas A. | O’Sullivan, Aisling
From a storm water management perspective, not all pavements are equivalent. Pavement type can impose a strong influence on pollutant wash-off dynamics. Pollutant loads from pavement wash-off are affected by the pavements’ physical and chemical composition. However, there is a dearth of information regarding how pavement type influences atmospherically deposited pollutant loads in storm water. Therefore, experimental impermeable and permeable asphalt and concrete boards were deployed in a residential area in Christchurch, New Zealand, to quantify the influence of pavement type on storm water pollutant dynamics. Each pavement type had four replicate systems elevated 500 mm from the ground at a 4° slope. Wash-off from the pavements was collected and analysed for total suspended solids and metals (Cu, Pb, and Zn) from June to August 2014. Results show that Cu and Zn loads were lower from the concrete pavements than the asphalt pavements because the carbonates and hydroxides within the concrete adsorbed Cu and Zn. Run-off from the impermeable asphalt had the highest loads of Zn, which was attributed to Zn leaching from the asphalt. Infiltrate from permeable asphalt provided little/no retention of Cu and Zn, due to the low pH of the infiltrate causing Cu and Zn to partition into the dissolved phase and leach through the pavement. Total suspended solid (TSS) and Pb loads were the highest in run-off from the impermeable concrete, which was attributed to the smooth surface enabling particulates to be easily mobilised. TSS and Pb loads were the lowest from the permeable pavement due to the permeable material filtering out particulates.
显示更多 [+] 显示较少 [-]Hydrochemistry of Ground Waters from Urban Wells in Almadén (Central Spain): Water Quality Around the World’s Largest Mercury Mining-Metallurgical Complex
2015
Porcel, Yolanda | Lillo, Javier | Esbrí, José M. | Oyarzun, Roberto | García-Noguero, Eva M. | Trujillo, Ángel | Higueras, Pablo
This paper presents the results of a study on mercury distribution in urban wells from the town of Almadén (central Spain), a site that not only hosted the world’s largest mercury mine but also a large roasting plant for cinnabar (HgS). The study includes data on Hg contents in the underground waters and also quality and physical-chemical parameters such as pH, conductivity, oxidation-reduction potential (ORP), dissolved oxygen, and water temperature from 27 wells and 2 monitoring drill holes. An important proportion of the wells (16 %) display Hg concentrations above the European Union Commission (EUC) and Spanish threshold (at 1 μg L⁻¹) and only 10 % exceeded the US EPA recommendation (at 2 μg L⁻¹). As expected, the highest concentrations of dissolved and total Hg are found in wells near to the mine. Hydrochemical water types depend on geogenic and anthropogenic factors, for example, higher mercury concentrations are linked to water-rock interactions (e.g., oxidation, leaching) in sectors where soluble mercury compounds have formed. Hg concentrations show a decrease from 2013 to 2015, a fact that may be due to the encapsulation of the main calcines waste dump or to dilution effects related to strong rainfall events previous to the sampling survey.
显示更多 [+] 显示较少 [-]Influence of Hydroxypropyl-β-cyclodextrin on the Extraction and Biodegradation of p,p′-DDT, o,p′-DDT, p,p′-DDD, and p,p′-DDE in Soils
2015
Gao, Huipeng | Gao, Xiaorong | Cao, Yaming | Xu, Li | Jia, Lingyun
Dichlorodiphenyltrichloroethane (DDT) is one of the persistent organic pollutants (POPs) that are highly toxic to the environment. Effective evaluation on the bioavailability of DDTs in soils is essential for risk assessment and soil remediation. The aims of this study were to verify the feasibility of the hydroxypropyl-β-cyclodextrin (HPCD) extraction method for predicting the bioavailability of DDT, dichlorodiphenyldichloroethane (DDD), and dichlorodiphenyldichloroethylene (DDE) in soils, and to examine the effect of HPCD on their biodegradation in different soils. Four soils were aged with a mixture of p,p′-DDT, o,p′-DDT, p,p′-DDD and p,p′-DDE (0.25 μg g⁻¹ for each compound) for 20 and 100 days, respectively. For each of the DDTs, a significant positive correlation between HPCD-extractable fraction and biodegradable fraction in each soil was observed. It was demonstrated that the amounts of HPCD-extractable p,p′-DDT and o,p′-DDT were not significantly different from the amounts that were degradable as assessed from their degradation by Enterobacter sp. LY402 (p > 0.05). Such 1:1 relationship between extraction and degradation was not obtained in the cases of p,p′-DDD and p,p′-DDE, as the amounts of degradable p,p′-DDD and p,p′-DDE were lower than the amounts that were extractable with HPCD. Additionally, the biodegradation of p,p′-DDT, o,p′-DDT, p,p′-DDD, and p,p′-DDE was inhibited in the presence of HPCD, which could be due to the binding of the compounds to HPCD, making them less available to access the bacteria for degradation. This study provides the possibility of using the HPCD extraction method to predict the bioavailability of p,p′-DDT and o,p′-DDT in soils. But when HPCD was used as an additive in the bioremediation of DDT-contaminated soils, it might have a negative effect on biodegradation.
显示更多 [+] 显示较少 [-]