细化搜索
结果 1661-1670 的 7,990
Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process
2021
Su, Yinglong | Zhang, Zhongjian | Zhu, Jundong | Shi, Jianhong | Wei, Huawei | Xie, Bing | Shi, Huahong
Microplastics (MPs) are found to be ubiquitous and serve as vectors for other contaminants, and the inevitable aging process changes MP properties and fates. However, whether the MPs in aging process affects the fates of antibiotic resistance gene (ARGs) in aquatic environments is poorly understood. Herein, the physicochemical property alteration of MPs being aged in landfill leachate, an important reservoir of MPs and ARGs, was investigated, and microbial community evolution and ARGs occurrence of MP surface during the aging process were analyzed. Aging process remarkably altered surface properties, including increasing specific surface areas, causing the formation of oxygen-containing groups, and changing surface morphology, which further increased the probability of microbial colonization. The bacterial assemblage on MPs showed higher biofilm-forming and pathogenic potential compared to leachate. ARGs quantification results suggested that MPs exhibited selective enrichment for ARGs in a ratio of 5.7–10³ folds, and the aging process enhanced the enrichment potential. Further co-occurrence networks suggested that the existence of non-random, closer and more stable ARGs-bacterial taxa relations on MP surface affected the ARG transmission. The study of ARG partitioning on MPs indicated that extracellular DNA was a nonnegligible reservoir of ARGs attached on MP surface, and that biofilm bacterial community influenced ARGs partitioning pattern during the aging process. This study confirmed that the aging process could enhance the potential of MPs as vectors for ARGs, which would promote the holistic understanding of MP behavior and risk in natural environments.
显示更多 [+] 显示较少 [-]An efficient phthalate ester-degrading Bacillus subtilis: Degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme
2021
Xu, Youqiang | Liu, Xiao | Zhao, Jingrong | Huang, Huiqin | Wu, Mengqin | Li, Xiuting | Li, Weiwei | Sun, Xiaotao | Sun, Baoguo
Phthalate ester pollution in the environment and food chain is frequently reported. Microbial treatment is a green and efficient method for solving this problem. The isolation and systematic investigation of microorganisms generally recognized as safe (GRAS) will provide useful resources. A GRAS Bacillus subtilis strain, BJQ0005, was isolated from Baijiu fermentation starter and efficiently degraded phthalate esters (PAEs). The half-lives for di-isobutyl phthalate, di-butyl phthalate and di-(2-ethylhexyl) phthalate were 3.93, 4.28, and 25.49 h, respectively, from the initial amount of 10 mg per 10 mL reaction mixture, which are records using wild-type strains. Genome sequencing and metabolic intermediate analysis generated the whole metabolic pathway. Eighteen enzymes from the α/β hydrolase family were expressed. Enzymes GTW28_09400 and GTW28_13725 were capable of single ester bond hydrolysis of PAEs, while GTW28_17760 hydrolyzed di-ester bonds of PAEs. Using molecular docking, a possible mechanism affecting enzymatic ester bond hydrolysis of mono-butyl phthalate was proposed of GTW28_17760. The carboxyl group generated by the first hydrolysis step interacted with histidine in the catalytic active center, which negatively affected enzymatic hydrolysis. Isolation and systematic investigation of the PAE degradation characteristics of B. subtilis will promote the green and safe treatment of PAEs in the environment and food industry.
显示更多 [+] 显示较少 [-]Effect of ultrasonic pretreatment on chain elongation of saccharified residue from food waste by anaerobic fermentation
2021
Ma, Hongzhi | Lin, Yujia | Jin, Yong | Gao, Ming | Li, Hongai | Wang, Qunhui | Ge, Shengbo | Cai, Liping | Huang, Zhenhua | Van Le, Quyet | Xia, Changlei
Converting biowaste into value-added products has raised the researchers’ interests. In this study, bioconversion was applied to produce chain acids from food waste by anaerobic fermentation. To improve the caproic acid production, different pretreatments (i.e., ultrasonic, hydrothermal, and alkaline-thermal) were used for investigating their effects on the acidogenic production and microbial communities. The results showed that ultrasonic and hydrothermal pretreatments (207.8 and 210.1 mg COD/g VS, respectively) were very efficient for enhancing the caproic acid production, compared to the alkaline-thermal pretreated samples and control samples (72.6 and 97.5 mg COD/g VS, respectively). The ultrasonic pretreatment was beneficial for reducing volatile fatty acids (VFAs) during the caproic acid production, resulting in converting more lactic acid to caproic acid by adding the hydrothermal pretreatment. The microbial community analysis showed that the acidogenic bacteria Caproiciproducens dominated the fermentation in this bioconversion process of food waste into chain acids. The Caproiciproducens mainly degraded the proteins and carbohydrates from the saccharified residues of food waste to produce caproic acids through chain elongation procedure. The investigation and optimized method may help develop the bioconversion technology for producing VFAs products from food wastes.
显示更多 [+] 显示较少 [-]Phosphorus fractionation related to environmental risks resulting from intensive vegetable cropping and fertilization in a subtropical region
2021
Zhang, Wei | Zhang, Yuwen | An, Yuli | Chen, Xinping
Overuse of phosphorus (P) fertilizer and the resulting soil P accumulation in vegetable production increases the risk of P runoff and leaching. However, P transformations under continuous fertilization and their effects on environmental risk are unclear. The current study examined the effects of long-term P fertilizer application on P fractions in different soil layers, and assessed the correlations between P fractions and environmental risks in intensive vegetable production in a subtropical region. A total of 32 fields were studied, including 8 uncultivated fields and 24 fields continuously used for vegetable production for 1–3, 4–9, or 10–15 years. The results showed that excessive P fertilizer input caused soil P surpluses ranging from 204.6 to 252.4 kg ha⁻¹ yr⁻¹. Compared to uncultivated fields, vegetable fields contained higher levels of labile P, moderately labile P, sparingly labile P, and non-labile P. The combined percentage of labile P and moderately labile P increased from 55.2% in fields cultivated for 0–3 year to 65.5% in fields cultivated for 10–15 years. The concentrations of soil P fractions were higher at 0–20 cm soil depth than at 20–40 and 40–60 cm soil depth. Soil available P was positively correlated with all soil P fractions except diluted HCl-Pᵢ or concentrated HCl-Pₒ. Long-term vegetable production increased CaCl₂–P downward movement, which was positively correlated with levels of labile and moderately labile P. The P index indicated a high risk of P losses from the vegetable fields. The P index was on average 3.27-fold higher in the vegetable fields than in uncultivated fields, and was significantly correlated with soil available P and organic and inorganic P fertilizer input. The environmental risk caused by P in vegetable production should be reduced by reducing P fertilizer input so as to maintain soil available P within an optimal range for vegetable production.
显示更多 [+] 显示较少 [-]Characteristics of selenium enrichment and assessment of selenium bioavailability using the diffusive gradients in thin-films technique in seleniferous soils in Enshi, Central China
2021
Lyu, Chenhao | Qin, Yongjie | Zhao, Zhuqing | Liu, Xinwei
Agricultural products from seleniferous areas commonly face problems associated with substantial variation in selenium (Se) concentration, which is mainly caused by the heterogeneity of Se bioavailability in soil. Many studies have assessed the bioavailability of Se and its influencing factors using soil samples treated with exogenous Se. Given the distinctly different characteristics of Se-spiked soils and naturally seleniferous soils, exploring Se bioavailability in naturally seleniferous soils is crucial to the stable production of Se-enriched agricultural products. In this study, we used the classical sequential extraction method to determine the Se fractionation and then applied the diffusive gradients in thin-films (DGT) technique to assess the Se bioavailability in naturally seleniferous soils. The results indicated that soluble and exchangeable Se fractions with high bioavailability accounted for only 0.7% and 5.1% of total Se, respectively. Both soluble and exchangeable Se concentrations were significantly positively correlated with soil pH (r = 0.329 and 0.262, respectively; P < 0.01). Se mainly exists in Fe–Mn oxide-bound, organic matter-bound, and residual Se fractions with low mobility (94.2% of total Se), among which organic matter-bound Se was the predominant fraction (49.5% of total Se). A significant positive correlation was found between total Se and soil organic matter (r = 0.539; P < 0.01). Multiple regression analysis revealed that the DGT-determined Se was mostly derived from soluble and exchangeable Se. The high correlation between the DGT-determined Se fraction and Se uptake by rice (r = 0.91; P < 0.01) confirmed that DGT can accurately assess Se bioavailability in naturally seleniferous soils in Enshi and other similar environmental settings.
显示更多 [+] 显示较少 [-]Magnetic biochars have lower adsorption but higher separation effectiveness for Cd2+ from aqueous solution compared to nonmagnetic biochars
2021
Huang, Fei | Zhang, Si-Ming | Wu, Ren-Ren | Zhang, Lu | Wang, Peng | Xiao, Rong-Bo
Magnetic biochars were prepared by chemical co-precipitation of Fe³⁺/Fe²⁺ onto rice straw (M-RSB) and sewage sludge (M-SSB), followed by pyrolysis treatment, which was also used to prepare the corresponding nonmagnetic biochars (RSB and SSB). The comparison of adsorption characteristics between magnetic and nonmagnetic biochars was investigated as a function of pH, contact time, and initial Cd²⁺ concentration. The adsorption of nonmagnetic biochars was better described by pseudo-second-order kinetic model, and the adsorption of RSB and SSB was better described by Langmuir and Freundlich models, respectively. Magnetization of the biochars did not change the applicability of their respective adsorption models, but reduced their adsorption capabilities. The maximum capacities were 42.48 and 4.64 mg/g for M-RSB and M-SSB, respectively, underperforming their nonmagnetic counterparts of 58.65 and 7.22 mg/g for RSB and SSB. Such a reduction was fundamentally caused by the decreases in the importance of cation-exchange and Cπ-coordination after magnetization, but the Fe-oxides contributed to the precipitation-dependent adsorption capacity for Cd²⁺ on magnetic biochars. The qualitative and quantitative characterization of adsorption mechanisms were further analyzed, in which the contribution proportions of cation-exchange after magnetization were reduced by 31.9% and 12.1% for M-RSB and M-SSB, respectively, whereas that of Cπ-coordination were reduced by 3.4% and 31.1% for M-RSB and M-SSB, respectively. These reductions suggest that for adsorbing Cd²⁺ the choice of conventional biochar was more relevant than whether the biochar was magnetized. However, magnetic biochars are easily separated from treated solutions, depending largely on initial pH. Their easy of separation suggests that magnetic biochars hold promise as more sustainable alternatives for the remediation of moderately Cd-contaminated environments, such as surface water and agriculture soil, and that magnetic biochars should be studied further.
显示更多 [+] 显示较少 [-]Pre-fertilization exposure of sperm to nano-sized plastic particles decreases offspring size and swimming performance in the European whitefish (Coregonus lavaretus)
2021
Yaripour, Sareh | Huuskonen, Hannu | Rahman, Tawfiqur | Kekäläinen, Jukka | Akkanen, Jarkko | Magris, Martina | Kipriianov, Pavel Vladimirovich | Kortet, Raine
Exposure of aquatic organisms to micro- and nano-sized plastic debris in their environment has become an alarming concern. Besides having a number of potentially harmful impacts for individual organisms, plastic particles can also influence the phenotype and performance of their offspring. We tested whether the sperm pre-fertilization exposure to nanoplastic particles could affect offspring survival, size, and swimming performance in the European whitefish Coregonus lavaretus. We exposed sperm of ten whitefish males to three concentrations (0, 100 and 10 000 pcs spermatozoa⁻¹) of 50 nm carboxyl-coated polystyrene spheres, recorded sperm motility parameters using computer assisted sperm analysis (CASA) and then fertilized the eggs of five females in all possible male-female combinations. Finally, we studied embryonic mortality, hatching time, size, and post-hatching swimming performance of the offspring. We found that highest concentration of plastic particles decreased sperm motility and offspring hatching time. Furthermore, sperm exposure to highest concentration of plastics reduced offspring body mass and impaired their swimming ability. This suggests that sperm pre-fertilization exposure to plastic pollution may decrease male fertilization potential and have important transgenerational impacts for offspring phenotype and performance. Our findings indicate that nanoplastics pollution may have significant ecological and evolutionary consequences in aquatic ecosystems.
显示更多 [+] 显示较少 [-]DEHP-elicited small extracellular vesicles miR-26a-5p promoted metastasis in nearby normal A549 cells
2021
Qin, Yifei | Zhang, Jing | Avellán-Llaguno, Ricardo David | Zhang, Xu | Huang, Qiansheng
Small extracellular vesicles (sEV) are small lipid bilayer particles released by cells. sEV have been shown to play critical roles in intercellular communication. Di (2-ethylhexyl) phthalate (DEHP), widely used as plasticizers, has been detected in the environment and human beings. DEHP was found to exist in the air particles and showed pulmonary toxicity. However, there’s little knowledge about the role of sEV in mediating the toxicity of DEHP-induced lung toxicity. We hypothesized that sEV mediated the toxicity of DEHP through their cargo. To validate this, lung epithelial cells (A549) were exposed to various concentrations (0, 0.2, 2 and 20 μM) of DEHP for 48 h. sEV extracted from DEHP-exposed A549 cells were cultured with unexposed A549 cells. Results showed that DEHP induced the epithelial-mesenchymal transition (EMT) and promoted the migration and invasion ability of A549 cells. The number of released sEV significantly increased in the culture media in DEHP-exposed groups compared to unexposed groups. The sEV can enter the unexposed A549 cells and enhance its EMT and the ability of migration and invasion. Treatment with GW4869 in DEHP-exposed A549 cells almost blocked the effects of DEHP-elicited sEV in normal A549 cells. Sequencing and functional analysis showed that the enrichment of significantly differentially expressed sEV miRNAs were related to tumor etiology. MiR-26a-5p was significantly enriched in DEHP-elicited sEV. Inhibition of miR-26a-5p in DEHP-exposed cells led to the downregulation of miR-26a-5p in sEV, and thus abolished the effects of DEHP-elicited sEV in normal A549 cells, whereas overexpression of miR-26a-5p restored the effects. The transcription factors twist is one of the downstream targets in the effects of sEV-miR-26a-5p on EMT process. In all, our results showed that DEHP exposure promoted the secretion of miR-26a-5p in sEV, which subsequently enhanced the EMT, migration and invasion ability in neighboring normal cells via the twist.
显示更多 [+] 显示较少 [-]Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM2.5 and O3 in Wuhan, China
2021
Yin, Hao | Liu, Cheng | Hu, Qihou | Liu, Ting | Wang, Shuntian | Gao, Meng | Xu, Shiqi | Zhang, Chengxin | Su, Wenjing
To prevent the spread of the COVID-19 epidemic, the Chinese megacity Wuhan has taken emergent lockdown measures starting on January 23, 2020. This provided a natural experiment to investigate the response of air quality to such emission reductions. Here, we decoupled the influence of meteorological and non-meteorological factors on main air pollutants using generalized additive models (GAMs), driven by data from the China National Environmental Monitoring Center (CNEMC) network. During the lockdown period (Jan. 23 – Apr. 8, 2020), PM₂.₅, PM₁₀, NO₂, SO₂, and CO concentrations decreased significantly by 45 %, 49 %, 56 %, 39 %, and 18 % compared with the corresponding period in 2015–2019, with contributions by S(meteos) of 15 %, 17 %, 13 %, 10 %, and 6 %. This indicates an emission reduction of NOₓ at least 43 %. However, O₃ increased by 43 % with a contribution by S(meteos) of 6 %. In spite of the reduced volatile organic compound (VOC) emissions by 30 % during the strict lockdown period (Jan. 23 – Feb. 14, 2020), which likely reduced the production of O₃, O₃ concentrations increased due to a weakening of the titration effect of NO. Our results suggest that conventional emission reduction (NOₓ reduction only) measures may not be sufficient to reduce (or even lead to an increase of) surface O₃ concentrations, even if reaching the limit, and VOC-specific measures should also be taken.
显示更多 [+] 显示较少 [-]Occurrence of Raphidiopsis raciborskii blooms in cool waters: Synergistic effects of nitrogen availability and ecotypes with adaptation to low temperature
2021
Jia, Nannan | Wang, Yilang | Guan, Yuying | Chen, Youxin | Li, Renhui | Yu, Gongliang
Raphidiopsis raciborskii is a diazotrophic and potentially toxic cyanobacterium. To date, this species has successfully invaded many regions from the tropics to sub-tropical and temperate regions, typically forming blooms at temperatures greater than 25 °C. However, there have been a few cases in which R. raciborskii blooms have occurred at low temperatures (below 15 °C), but its cause and mechanisms remain unclear. In this study, field investigations revealed that R. raciborskii blooms occurred at 10–15 °C in Lake Xihu, Yunnan, China. The biomass of R. raciborskii was found to be positively related to nitrate concentrations in this lake. Three strains of R. raciborskii, two isolated from Lake Xihu (CHAB 6611 and CHAB 6612) and one from Lushui Reservoir in central China (CHAB 3409), were used for growth experiments at 15 °C. The three strains exhibited genotypic (16S rRNA and ITS-L genes) and physiological differences in response to nitrogen concentrations at low temperature. The growth rates of strains CHAB 6611 and CHAB 6612 increased with nitrogen concentration while CHAB 3409 could not grow at 15 °C. Furthermore, the growth and phenotypic responses of CHAB 6611 and CHAB 6612 to nitrogen concentrations were different, despite the closer genetic relationship shared by these two strains. Thus, increased nitrogen concentration in water may enhance the biological availability and utilization of nitrogen by R. raciborskii, which is the external promoter, leading to improving the resistance of R. raciborskii to low temperature. The internal cause is the presence of ecotypes in R. raciborskii populations with adaptation to low temperature. With increasing global eutrophication, the distribution range of R. raciborskii as well as the scale of its blooms will increase. As such, the risk of exposure of aquatic biota and humans to cylindrospermopsin is also expected to increase.
显示更多 [+] 显示较少 [-]