细化搜索
结果 1671-1680 的 8,010
Coordination between root cell wall thickening and pectin modification is involved in cadmium accumulation in Sedum alfredii 全文
2021
Guo, Xinyu | Luo, Jipeng | Du, Yilin | Li, Jinxing | Liu, Yuankun | Liang, Yongchao | Li, Tingqiang
Root cell wall (RCW) modification is a widespread important defense strategy of plant to cope with trace metals. However, mechanisms underlying its remolding in cadmium (Cd) accumulation are still lacking in hyperaccumulators. In this study, changes of RCW structures and components between nonhyperaccumulating ecotype (NHE) and hyperaccumulating ecotype (HE) of Sedum alfredii were investigated simultaneously. Under 25 μM Cd treatment, RCW thickness of NHE is nearly 2 folds than that of HE and the thickened cell wall of NHE was enriched in low-methylated pectin, leading to more Cd trapped in roots tightly. In the opposite, large amounts of high-methylated pectin were assembled around RCW of HE with Cd supply, in this way, HE S. alfredii decreased its root fixation of Cd and enhanced Cd migration into xylem. TEM and AFM results further confirmed that thickened cell wall was caused by the increased amounts of cellulose and lignin while root tip lignification was resulted from variations of sinapyl (S) and guaiacyl (G) monomers. Overall, thickened cell wall and methylated pectin have synchronicity in spatial location of roots, and their coordination contributed to Cd accumulation in S. alfredii.
显示更多 [+] 显示较少 [-]Effects of artificial light at night on the nest-site selection, reproductive success and behavior of a synanthropic bird 全文
2021
Wang, Jhih-Syuan | Tuanmu, Mao-Ning | Hong, Zhiming
Understanding how artificial light at night (ALAN) impacts wildlife is increasingly important because more and more species are colonizing urban areas. As most of the bird studies on ALAN use controlled light set inside or around nest-boxes, the ecological effect of ALAN resulting from in situ streetlight on birds remains contentious. The barn swallow (Hirundo rustica) often builds open nests on buildings, which are directly exposed to varying intensity of ALAN, and thus provides a good system to examine the effect of in situ ALAN on birds. By examining the nest-site selection, reproductive success and behavior of barn swallows under various ALAN intensity in Taipei City, we found a positive effect of ALAN on their fledging success; nonetheless, such effect was only found in the swallows’ first brood, but not second one. We also found that parent birds in the nests with higher ALAN intensity had higher feeding rates and more extended feeding time past sunset, which were likely stimulated by the increased begging behavior of their chicks. The night-feeding behavior might contribute to the increased fledging success, especially at the early breeding season. Interestingly, despite of the reproductive benefits obtained from ALAN, we found that the barn swallows did not select nest sites regarding ALAN intensity. The weak nest-site selection perhaps result from the complex life history interactions involving ALAN and/or confounding factors associated with ALAN in cities. This study improves our understanding of how urban birds, especially open-nesting ones, respond to in situ ALAN and provides useful information for developing urban conservation strategies.
显示更多 [+] 显示较少 [-]Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.) 全文
2021
Kumarathilaka, Prasanna | Bundschuh, Jochen | Seneweera, Saman | Marchuk, Alla | Ok, Yong Sik
Production of rice grains at non-toxic levels of arsenic (As) to meet the demands of an ever-increasing population is a global challenge. There is currently a lack of investigation into integrated approaches for decreasing As levels in rice agro-ecosystems. By examining the integrated iron-modified rice hull biochar (Fe-RBC) and water management approaches on As dynamics in the paddy agro-ecosystem, this study aims to reduce As accumulation in rice grains. The rice cultivar, Ishikari, was grown and irrigated with As-containing water (1 mg L⁻¹ of As(V)), under the following treatments: (1) Fe-RBC-flooded water management, (2) Fe-RBC-intermittent water management, (3) conventional flooded water management, and (4) intermittent water management. Compared to the conventional flooded water management, grain weight per pot and Fe and Si concentrations in the paddy pore water under Fe-RBC-intermittent and Fe-RBC-flooded treatments increased by 24%–39%, 100%–142%, and 93%–184%, respectively. The supplementation of Fe-RBC decreased the As/Fe ratio and the abundance of Fe(III) reducing bacteria (i.e. Bacillus, Clostridium, Geobacter, and Anaeromyxobacter) by 57%–88% and 24%–64%, respectively, in Fe-RBC-flooded and Fe-RBC-intermittent treatments compared to the conventional flooded treatment. Most importantly, Fe-RBC-intermittent treatment significantly (p ≤ 0.05) decreased As accumulation in rice roots, shoots, husks, and unpolished rice grains by 62%, 37%, 79%, and 59%, respectively, compared to the conventional flooded treatment. Overall, integrated Fe-RBC-intermittent treatment could be proposed for As endemic areas to produce rice grains with safer As levels, while sustaining rice yields to meet the demands of growing populations.
显示更多 [+] 显示较少 [-]Co-application of DMPSA and NBPT with urea mitigates both nitrous oxide emissions and nitrate leaching during irrigated potato production 全文
2021
Souza, Emerson F.C. | Rosen, Carl J. | Venterea, Rodney T.
Potato (Solanum tuberosum L.) production in irrigated coarse-textured soils requires intensive nitrogen (N) fertilization which may increase reactive N losses. Biological soil additives including N-fixing microbes (NFM) have been promoted as a means to increase crop N use efficiency, though few field studies have evaluated their effects, and none have examined the combined use of NFM with microbial inhibitors. A 2-year study (2018–19) in an irrigated loamy sand quantified the effects of the urease inhibitor NBPT, the nitrification inhibitor DMPSA, NFM, and the additive combinations DMPSA + NBPT and DMPSA + NFM on potato performance and growing season nitrous oxide (N₂O) emissions and nitrate (NO₃⁻) leaching. All treatments, except a zero-N control, received diammonium phosphate at 45 kg N ha⁻¹ and split applied urea at 280 kg N ha⁻¹. Compared with urea alone, DMPSA + NBPT reduced NO₃⁻ leaching and N₂O emissions by 25% and 62%, respectively, and increased crop N uptake by 19% in one year, although none of the additive treatments increased tuber yields. The DMPSA and DMPSA + NBPT treatments had greater soil ammonium concentration, and all DMPSA-containing treatments consistently reduced N₂O emissions, compared to urea-only. Use of NBPT by itself reduced NO₃⁻ leaching by 21% across growing seasons and N₂O emissions by 37% in 2018 relative to urea-only. In contrast to the inhibitors, NFM by itself increased N₂O by 23% in 2019; however, co-applying DMPSA with NFM reduced N₂O emissions by ≥ 50% compared to urea alone. These results demonstrate that DMPSA can mitigate N₂O emissions in potato production systems and that DMPSA + NBPT can reduce both N₂O and NO₃⁻ losses and increase the N supply for crop uptake. This is the first study to show that combining a nitrification inhibitor with NFM can result in decreased N₂O emissions in contrast to unintended increases in N₂O emissions that can occur when NFM is applied by itself.
显示更多 [+] 显示较少 [-]Multigenerational study of the obesogen effects of bisphenol S after a perinatal exposure in C57BL6/J mice fed a high fat diet 全文
2021
Brulport, Axelle | Le Corre, Ludovic | Maquart, Guillaume | Barbet, Virginie | Dastugue, Aurélie | Severin, Isabelle | Vaiman, Daniel | Chagnon, Marie-Christine
Bisphenol S is an endocrine disruptor exhibiting metabolic disturbances, especially following perinatal exposures. To date, no data are available on the obesogen effects of BPS in a mutligenerational issue.We investigated obesogen effects of BPS in a multigenerational study by focusing on body weight, adipose tissue and plasma parameters in male and female mice.Pregnant C57BL6/J mice were exposed to BPS (1.5 μg/kg bw/day ie a human equivalent dose of 0.12 μg/kg bw/day) by drinking water from gestational day 0 to post natal day 21. All offsprings were fed with a high fat diet during 15 weeks. Body weight was monitored weekly and fat mass was measured before euthanasia. At euthanasia, blood glucose, insuline, triglyceride, cholesterol and no esterified fatty acid plasma levels were determined and gene expressions in visceral adipose tissue were assessed. F1 males and females were mated to obtain the F2 generation. Likewise, the F2 mice were cross-bred to obtain F3. The same analyses were performed.In F1 BPS induced an overweight in male mice associated to lipolysis gene expressions upregulation. In F1 females, dyslipidemia was observed. In F2, BPS exposure was associated to an increase in body weight, fat and VAT masses in males and females. Several plasma parameters were increased but with a sex related pattern (blood glucose, triglycerides and cholesterol in males and NEFA in females). We observed a down-regulation in mRNA expression of gene involved in lipogenesis and in lipolysis for females but only in the lipogenesis for males. In F3, a decrease in VAT mass and an upregulation of lipogenesis gene expression occurred only in females.BPS perinatal exposure induced sex-dependent obesogen multigenerational effects, the F2 generation being the most impacted. Transgenerational disturbances persisted only in females.
显示更多 [+] 显示较少 [-]Exposure of Chinese adult females to parabens from personal care products: Estimation of intake via dermal contact and health risks 全文
2021
Li, Chun | Zhao, Yang | Liu, Shan | Yang, Dongfeng | Ma, Huimin | Zhu, Zhou | Kang, Li | Lu, Shaoyou
Parabens are added into foodstuffs, pharmaceuticals and personal care products (PCPs) as additives extensively due to their excellent antiseptic and antibacterial effects. In the past decade, parabens have raised great concerns on their potential harm to humans. Existing studies have suggested positive correlations between PCP application and urinary paraben concentrations in females, but little is known about paraben exposure levels and health risks arising from PCP use. In this study, 150 PCP samples covering eleven categories were collected from South China and measured for the concentrations of five parabens, including methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP) and benzyl paraben (BeP). Parabens were widely detected in PCPs, with a detection frequency of 100%, 99.3%, 80.0%, 74.0% and 13.3%, for MeP, EtP, PrP, BuP and BeP, respectively. The median concentration of Σ₅parabens was 126 μg/g with a range of 6.38–424 μg/g across all PCP samples. The contents of MeP, EtP and PrP measured in leave-on PCPs were obviously higher than those in the rinse-off ones (p < 0.05). MeP and PrP were the main paraben analogues, together accounting for 93.6% of Σ₅parabens in all PCPs. The daily intakes of parabens through dermal absorption by Chinese adult females estimated by measurements obtained in the present study were 0.15 and 83.2 μg/kg-bw/day on basis of the application of rinse-off and leave-on PCPs, respectively. Among the eleven categories, sunscreen, body lotion and mask constituted the main exposure sources of parabens to females. The hazard quotients of parabens were far less than 1, indicating no considerable health risk for Chinese adult females.
显示更多 [+] 显示较少 [-]Catalytic upgrading of Quercus Mongolica under methane environment to obtain high yield of bioaromatics 全文
2021
Farooq, Abid | Moogi, Surendar | Kwon, Eilhann E. | Lee, Jechan | Kim, Young-Min | Jae, Jungho | Jung, Sang-Chul | Park, Young-Kwon
This work investigated the impact of pyrolysis medium and catalyst on the production of bio-BTX (benzene, toluene, and xylene) from Quercus Mongolica (Q. Mongolica) via catalytic pyrolysis. Two different pyrolysis media (N₂ and CH₄) and five different zeolite catalysts (HY, HBeta, HZSM-5, 1 wt% Ni/HZSM-5, and 1 wt% Ga/HZSM-5) were considered for the Q. Mongolica pyrolysis. The HZSM-5 yielded more BTX than the HY and HBeta due to its strong acidity. The employment of CH₄ as the pyrolysis medium improved the BTX yield (e.g., 2.7 times higher total BTX yield in CH₄ than in N₂) and resulted in low coke yield (e.g., 5.27% for N₂-pyrolysis and 2.57% for CH₄-pyrolysis) because the CH₄-drived hydrogen simulated a hydropyrolysis condition and facilitated dehydroaromatization reaction. CH₄ also led to direct coupling, Diels-Alder, and co-aromatization reactions during the pyrolysis, contributing to enhancing the BTX yield. The addition of Ga to the HZSM-5 could further increase the BTX yield by means of facilitating hydrocracking/demethylation and methyl radical formation from CH₄ assisting the generation of >C2 alkenes that could be further converted into BTX on acid sites of the HZSM-5.
显示更多 [+] 显示较少 [-]High level of zinc triggers phosphorus starvation by inhibiting root-to-shoot translocation and preferential distribution of phosphorus in rice plants 全文
2021
Ding, Jingli | Liu, Lu | Wang, Chuang | Shi, Lei | Xu, Fangsen | Cai, Hongmei
Since the urbanization and industrialization are wildly spread in recent decades, the concentration of Zn in soil has increased in various regions. Although the interactions between P and Zn has long been recognized, the effect of high level of Zn on P uptake, translocation and distribution in rice and its molecular mechanism are not fully understood. In this study, we conducted both hydroponic culture and field trial with different combined applications of P and Zn to analyze the rice growth and yield, the uptake, translocation and distribution of P and Zn, as well as the P- and Zn-related gene expression levels. Our results showed that high level of Zn decreased the rice biomass and yield production, and inhibited the root-to-shoot translocation and distribution of P into new leaves by down-regulating P transporter genes OsPT2 and OsPT8 in shoot, which was controlled by OsPHR2-OsmiR399-OsPHO2 module. High Zn supply triggered P starvation signal in root, thereafter increased the activities of both root-endogenous and -secreted acid phosphatase to release more Pi, and induced the expression OsPT2 and OsPT8 to uptake more P for plant growth. On the other hand, high level of P significantly decreased the Zn concentrations in both root and shoot, and the root uptake ability of Zn through altering the expression levels of OsZIPs, which were further confirmed by the P high-accumulated mutant osnla1-2 and OsPHR2-OE transgenic plant. Taken together, we revealed the physiological and molecular mechanisms of P–Zn interactions, and proposed a working model of the cross-talk between P and Zn in rice plants. Our results also indicated that appropriate application of P fertilizer is an effective strategy to reduce rice uptake of excessive Zn when grown in Zn-contaminated soil.
显示更多 [+] 显示较少 [-]Interactive effects of microplastic pollution and heat stress on reef-building corals 全文
2021
Plastic pollution is an emerging stressor that increases pressure on ecosystems such as coral reefs that are already challenged by climate change. However, the effects of plastic pollution in combination with global warming are largely unknown. Thus, the goal of this study was to determine the cumulative effects of microplastic pollution with that of global warming on reef-building coral species and to compare the severity of both stressors. For this, we conducted a series of three controlled laboratory experiments and exposed a broad range of coral species (Acropora muricata, Montipora digitata, Porites lutea, Pocillopora verrucosa, and Stylophora pistillata) to microplastic particles in a range of concentrations (2.5–2500 particles L⁻¹) and mixtures (from different industrial sectors) at ambient temperatures and in combination with heat stress. We show that microplastic can occasionally have both aggravating or mitigating effects on the corals’ thermal tolerance. In comparison to heat stress, however, microplastic constitutes a minor stressor. While heat stress led to decreased photosynthetic efficiency of algal symbionts, and increased bleaching, tissue necrosis, and mortality, treatment with microplastic particles had only minor effects on the physiology and health of the tested coral species at ambient temperatures. These findings underline that while efforts to reduce plastic pollution should continue, they should not replace more urgent efforts to halt global warming, which are immediately needed to preserve remaining coral reef ecosystems.
显示更多 [+] 显示较少 [-]Multi-antibiotic resistant bacteria in landfill bioaerosols: Environmental conditions and biological risk assessment 全文
2021
Landfills, as well as other waste management facilities are well-known bioaerosols sources. These places may foment antibiotic-resistance in bacterial bioaerosol (A.R.B.) due to inadequate pharmaceutical waste disposal. This issue may foster the necessity of using last-generation antibiotics with extra costs in the health care system, and deaths. The aim of this study was to reveal the multi-antibiotic resistant bacterial bioaerosol emitted by a sanitary landfill and the surrounding area. We evaluated the influence of environmental conditions in the occurrence of A.R.B. and biological risk assessment. Antibiotic resistance found in the bacteria aerosols was compared with the AWaRE consumption classification. We used the BIOGAVAL method to assess the workers' occupational exposure to antibiotic-resistant bacterial bioaerosols in the landfill. This study confirmed the multi-antibiotic resistant in bacterial bioaerosol in a landfill and in the surrounding area. Obtained mean concentrations of bacterial bioaerosols, as well as antibiotic-resistant in bacterial bioaerosol (A.R.B.), were high, especially for fine particles that may be a threat for human health. Results suggest the possible risk of antibiotic-resistance interchange between pathogenic and non-pathogenic species in the landfill facilities, thus promoting antibiotic multi-resistance genes spreading into the environment.
显示更多 [+] 显示较少 [-]