细化搜索
结果 1671-1680 的 7,214
A nationwide survey on the endosulfan residues in Chinese cotton field soil: Occurrence, trend, and ecological risk
2022
Zhang, Yang | Dong, Zhaomin | Peng, Zheng | Zhu, Jingquan | Zhuo, Fuyan | Li, Yang | Ma, Zhihong
The nationwide occurrence of endosulfan residues in cotton fields has not yet been investigated. Therefore, in this study, 202 surface soil samples from 27 cities were collected from cotton fields in 8 major cotton-planting provinces of China, covering more than 97% of the national cotton sown area. The results showed that endosulfan residues were detected in cotton fields throughout the country. The main type of residue found was endosulfan sulfate (ES-sulfate), followed by β-endosulfan and α-endosulfan, with average concentrations of 0.475, 0.129, and 0.048 μg/kg, respectively. Significant spatial variations in the endosulfan residues was noted, and the highest concentration of endosulfan residues was observed in the northwest inland cotton-growing area, followed by that in the Yellow River basin and Yangtze River basin cotton-growing areas. The endosulfan residues showed significant positive correlations with soil organic matter and soil clay contents. The α/β endosulfan ratio was determined to be in the range of 0.02–1.20, indicating that endosulfan residues originated from the endosulfan application performed in historical cotton cultivation efforts. Together with the literature data, the concentrations of α-endosulfan and β-endosulfan residues peaked in 2015 and 2017, respectively, and showed an overall decreasing trend from 2002 to 2021. The results of the ecological risk assessment suggested that Folsomia candida was most sensitive to endosulfan residues, with 20.8% of the sites presenting a high risk. However, in general, the soil ecological risk of cotton fields across the country was low. Our study demonstrated that China has achieved promising results in controlling the use and pollution of endosulfan, especially after 2014.
显示更多 [+] 显示较少 [-]Autophagic event and metabolomic disorders unveil cellular toxicity of environmental microplastics on marine polychaete Hediste diversicolor
2022
Missawi, Omayma | Venditti, Massimo | Cappello, Tiziana | Zitouni, Nesrine | Marco, Giuseppe DE. | Boughattas, Iteb | Bousserrhine, Noureddine | Belbekhouche, Sabrina | Minucci, Sergio | Maisano, Maria | Banni, Mohamed
Although the hazards of microplastics (MPs) have been quite well explored, the aberrant metabolism and the involvement of the autophagy pathway as an adverse response to environmental MPs in benthic organisms are still unclear. The present work aims to assess the impact of different environmental MPs collected from the south coast of the Mediterranean Sea, composed by polyethylene (PE), polyethylene vinyl acetate (PEVA), low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and polyamide (PA) on the metabolome and proteome of the marine polychaete Hediste diversicolor. As a result, all the microplastic types were detected with Raman microspectroscopy in polychaetes tissues, causing cytoskeleton damage and induced autophagy pathway manifested by immunohistochemical labeling of specific targeted proteins, through Tubulin (Tub), Microtubule-associated protein light chain 3 (LC3), and p62 (also named Sequestosome 1). Metabolomics was conducted to further investigate the metabolic alterations induced by the environmental MPs-mixture in polychaetes. A total of 28 metabolites were differentially expressed between control and MPs-treated polychaetes, which showed elevated levels of amino acids, glucose, ATP/ADP, osmolytes, glutathione, choline and phosphocholine, and reduced concentration of aspartate. These novel findings extend our understanding given the toxicity of environmental microplastics and unravel their underlying mechanisms.
显示更多 [+] 显示较少 [-]Contributions of meteorology to ozone variations: Application of deep learning and the Kolmogorov-Zurbenko filter
2022
Sadeghi, Bavand | Ghahremanloo, Masoud | Mousavinezhad, Seyedali | Lops, Yannic | Pouyaei, Arman | Choi, Yunsoo
From hourly ozone observations obtained from three regions⸻Houston, Dallas, and West Texas⸻we investigated the contributions of meteorology to changes in surface daily maximum 8-h average (MDA8) ozone from 2000 to 2019. We applied a deep convolutional neural network and Shapely additive explanation (SHAP) to examine the complex underlying nonlinearity between variations of surface ozone and meteorological factors. Results of the models showed that between 2000 and 2019, specific humidity (38% and 27%) and temperature (28% and 37%) contributed the most to ozone formation over the Houston and Dallas metropolitan areas, respectively. On the other hand, the results show that solar radiation (50%) strongly impacted ozone variation over West Texas during this time. Using a combination of the Kolmogorov-Zurbenko (KZ) filter and multiple linear regression, we also evaluated the influence of meteorology on ozone and quantified the contributions of meteorological parameters to trends in surface ozone formation. Our findings showed that in Houston and Dallas, meteorology influenced ozone variations to a large extent. The impacts of meteorology on West Texas, however, showed meteorological factors had fewer influences on ozone variabilities from 2000 to 2019. This study showed that SHAP analysis and the KZ approach can investigate the contributions of the meteorological factors on ozone concentrations and help policymakers enact effective ozone mitigation policies.
显示更多 [+] 显示较少 [-]The adsorption of arsenic on micro- and nano-plastics intensifies the toxic effect on submerged macrophytes
2022
Tang, Na | Li, Xiaowei | Gao, Xueyuan | Liu, Xiaoning | Xing, Wei
Currently little is known about the adsorption behaviors of metalloids on microplastics (MPs) and their complex toxic effects on aquatic plants. Herein, we investigated the adsorption behaviors of arsenic (As(III) and As(V)) on three types of MPs (polystyrene, polyvinyl chloride, and polyethylene) with four different particle sizes (100, 10, 1, and 0.1 μm). Compared with the short-term exposure experiment, co-toxicity of polystyrene nanoplastics (PS-NPs) and As on two submerged macrophytes (Vallisneria denseserrulata and Potamogeton crispus) were explored through two relatively longer 14-day-cultivation experiments in summer and spring, respectively. The adsorption results showed that As entered the internal surface adsorption site of MPs at 24 h and fully combined to reach equilibrium. The adsorption capacity also enhanced with the increase of MPs concentrations, which generated more adsorption sites for binding with MPs. The presence of PS-NPs increased the absorption of As on macrophytes by 36.2–47.2%. More serious damage of leaf structure by combined PS-NPs and As was observed by transmission electron microscope. The larger harms by the co-toxicity of MPs and As were also reflected by the changes in physiochemical characteristics (e.g. photosynthesis) and the enhancement of oxidative damage of macrophytes. This work provides a clear theoretical basis for the behavior of PS-NPs as carrier with other contaminants on submerged macrophytes, and clearly evaluates the co-toxicity of NPs and metalloids in complex aquatic environments.
显示更多 [+] 显示较少 [-]Uptake and translocation of synthetic musk fragrances by pea plant grown in sewage sludge-amended soils
2022
Fernandes, Ana Sofia | Azevedo, Tomé | Rocha, Filipe | Nunes, Eugénia | Homem, Vera
Sewage sludges are rich in organic matter and several essential nutrients for plant growth, making them very appealing for application in agricultural soils. However, they may also contain a wide range of emerging pollutants, which has raised concerns about the potential risks of this practice to crops, the environment, and public health - accumulation in soils and/or plant uptake and translocation of contaminants. Therefore, there is a need to study plant-soil interactions and assess the uptake potential of these contaminants by food crops to better understand these risks. The main aim of this work was to assess the possible drawbacks of sludge application to cropland, by observing the impact on the growth and yield of a model crop (pea plant - Pisum sativum) grown over an 86-day greenhouse experiment and by assessing the uptake potential of synthetic musk fragrances. Different sewage sludge application rates (4–30-ton ha⁻¹) and initial concentrations of contaminants were tested. The application of sludge yielded benefits to the cultivated plants, finding improved crop productivity with an application rate of 30-ton ha⁻¹. At the end of the experiment, soil samples and plants separated into sections were analysed using a QuEChERS extraction methodology followed by gas chromatography-mass spectrometry (GC-MS) quantification. Galaxolide (HHCB) and tonalide (AHTN) underwent uptake by the plant roots, having been detected in concentrations up to 346 ng g⁻¹ on a dry weight basis (dw), but only HHCB was detected in above ground tissues. At the end, a decrease in the levels of synthetic musks in the amended soils (>80% in several instances) was observed. Assuming the worst-case scenario, no risk to human health was observed from the ingestion of peas grown on sewage sludge-amended soils. However, a soil hazard quotient analysis yielded worryingly high quotient values for AHTN in nearly all tested conditions.
显示更多 [+] 显示较少 [-]The influence of soil acidification on N2O emissions derived from fungal and bacterial denitrification using dual isotopocule mapping and acetylene inhibition
2022
Zheng, Qian | Ding, Junjun | Lin, Wei | Yao, Zhipeng | Li, Qiaozhen | Xu, Chunying | Zhuang, Shan | Kou, Xinyue | Li, Yuzhong
Denitrification, as both origins and sinks of N₂O, occurs extensively, and is of critical importance for regulating N₂O emissions in acidified soils. However, whether soil acidification stimulates N₂O emissions, and if so for what reason contributes to stimulate the emissions is uncertain and how the N₂O fractions from fungal (ffD) and bacterial (fbD) denitrification change with soil pH is unclear. Thus, a pH gradient (6.2, 7.1, 8.7) was set via manipulating cropland soils (initial pH 8.7) in North China to illustrate the effect of soil acidification on fungal and bacterial denitrification after the addition of KNO₃ and glucose. For source partitioning, we used and compared SP/δ¹⁸O mapping approach (SP/δ¹⁸O MAP) and acetylene inhibition technique combined isotope two endmember mixing model (AIT-IEM). The results showed significantly higher N₂O emissions in the acidified soils (pH 6.2 and pH 7.1) compared with the initial soil (pH 8.7). The cumulative N₂O emissions during the whole incubation period (15 days) ranged from 7.1 mg N kg⁻¹ for pH 8.7–18.9 mg N kg⁻¹ for pH 6.2. With the addition of glucose, relative to treatments without glucose, this emission also increased with the decrement of pH values, and were significantly stimulated. Similarly, the highest N₂O emissions and N₂O/(N₂O + N₂) ratios (rN₂O) were observed in the pH 6.2 treatment. But the difference was the highest cumulative N₂O + N₂ emissions, which were recorded in the pH 7.1 treatment based on SP/δ¹⁸O MAP. Based on both approaches, ffD values slightly increased with the acidification of soil, and bacterial denitrification was the dominant pathway in all treatments. The SP/δ¹⁸O MAP data indicated that both the rN₂O and ffD were lower compared to AIT-IEM. It has been known for long that low pH may lead to high rN₂O of denitrification and ffD, but our documentation of a pervasive pH-control of rN₂O and ffD by utilizing combined SP/δ¹⁸O MAP and AIT-IEM is new. The results of the evaluated N₂O emissions by acidified soils are finely explained by high rN₂O and enhanced ffD. We argue that soil pH management should be high on the agenda for mitigating N₂O emissions in the future, particularly for regions where long-term excessive nitrogen fertilizer is likely to acidify the soils.
显示更多 [+] 显示较少 [-]Per-, poly-fluoroalkyl substances (PFASs) and planktonic microbiomes: Identification of biotic and abiotic regulations in community coalescence and food webs
2022
Wu, Jian-yi | Hua, Zu-lin | Gu, Li
The importance of per-, poly-fluoroalkyl substances (PFASs) effects on riverine microbiomes is receiving increased recognition in the environmental sciences. However, few studies have explored how PFASs affect microbiomes across trophic levels, specifically through predator-prey interactions. This study examined the community profiles of planktonic archaea, bacteria, fungi, algae, protozoa, and metazoa in a semi-industrial and agricultural river alongside their interactions with 15 detected PFASs. As abiotic factors, PFASs affected community coalescence more than biogenic substances (p < 0.05). For biotic regulations, sub-communities in rare biospheres (including always rare taxa-ART and critically rare taxa-CRT) contributed to spatial community coalescence more than sub-communities in abundant biospheres (always abundant taxa-AAT and critically abundant taxa-CAT) (p < 0.05). Metazoa-bacteria (Modularity = 1.971) and protozoa-fungi (1.723) were determined to be the most stable predator-prey networks. Based on pathway models, short-chain PFBA (C4) was shown to weaken the trophic transfer efficiencies from heterotrophic bacteria (HB) to heterotrophic flagellates (HF) (p < 0.05). Long-chain PFTeDA (C14) promoted HB to amoeba (p < 0.05), which we postulate is the pathway for PFTeDA to enter the microbial food chain. Our preliminary results elucidated the influence of PFASs on planktonic microbial food webs and highlighted the need to consider protecting and remediating riverine ecosystems containing PFASs.
显示更多 [+] 显示较少 [-]ElNFS1, a nitroreductase gene from Enterobacter ludwigii, confers enhanced detoxification and phytoremediation of 4-nitrobenzaldehyde in rice
2022
Li, Zhenjun | Gao, Jianjie | Tian, Yongsheng | Wang, Bo | Xu, Jing | Fu, Xiaoyan | Han, Hongjuan | Wang, Lijuan | Zhang, Wenhui | Wang, Yu | Deng, Yongdong | Gong, Zehao | Peng, Rihe | Yao, Quanhong
4-nitrobenzaldehyde (4-NBA) is a widely used chemical intermediate for industrial application and an important photodegradation product of chloramphenicol. This compound represents a substantial threat to human health and ecosystem due to its genotoxic and mutagenic effect. In this study, the 4-NBA detoxification by transgenic rice overexpressing a bacterial nitroreductase gene, ElNFS1, from Enterobacter ludwigii were investigated. The cytosol-targeted ElNFS1 transgenic plants were selected to comprehensively examine their physio-biochemical responses and phytoremediation potential to 4-NBA. Our results showed that the transgenic plants exhibited strong tolerance to 4-NBA. Overexpression of ElNFS1 could significantly alleviate 4-NBA-induced damages of photosynthetic apparatus and reactive oxygen species overproduction in transgenic plants. The phytoremediation assay revealed that transgenic plants could remove more 4-NBA from the medium than wild-type plants. HPLC and LC-MS assays showed that 4-aminobenzaldehyde was found in the reductive products of 4-NBA. Altogether, the function of ElNFS1 during 4-NBA detoxification was characterized for the first time, which provides a strong theoretical support for the application potential of ElNFS1 transgenic plants on the phytoremediation of 4-NBA.
显示更多 [+] 显示较少 [-]Effect of carrier gas during pyrolysis on the persistence and bioavailability of polycyclic aromatic hydrocarbons in biochar-amended soil
2022
Godlewska, Paulina | Oleszczuk, Patryk
In this study the persistence (based on extractable, Cₜₒₜ) and bioavailability (based on freely dissolved content, Cfᵣₑₑ) of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil was investigated. Biochar produced at 500 or 700 °C from sewage sludge (BC) or sewage sludge and willow (W) mixture (BCW) in an atmosphere of nitrogen (N₂) or carbon dioxide (CO₂) was evaluated. The biochars were applied to the real soil (podzolic loamy sand) at a dose of 2% (w/w). The content of Cₜₒₜ and Cfᵣₑₑ PAHs was monitored for 180 days. The biochar production conditions determined the Cₜₒₜ and Cfᵣₑₑ PAHs in the soil. A change of carrier gas from N₂ to CO₂ caused an increase in Cₜₒₜ PAH losses in the soil from 19 to 75% for the biochar produced from SL and from 49 to 206% for the co-pyrolyzed biochar. As regards Cfᵣₑₑ PAHs, the change from N₂ to CO₂ increased the losses of Cfᵣₑₑ PAHs only for the biochar derived from SL at a temperature of 500 °C (by 21%). In the soil with the other biochars (produced at 700 °C from SL as well as at 500 and 700 °C from SL/W), the Cfᵣₑₑ increased from 17 to 26% compared to the same biochars produced in an atmosphere of N₂.
显示更多 [+] 显示较少 [-]Effects of a soil collembolan on the growth and metal uptake of a hyperaccumulator: Modification of root morphology and the expression of plant defense genes
2022
Pu, Liming | Li, Zhu | Jia, Mingyun | Ke, Xin | Liu, Hongyan | Christie, Peter | Wu, Longhua
Soil collembolans live in close proximity to plant roots and may have a role in the phytoextraction of potentially toxic metals from contaminated soils but the underlying mechanisms remain poorly investigated. We hypothesize that soil collembolans may change the root morphology of hyperaccumulators by regulating plant physiological characteristics. Here, a pot experiment was conducted in which a cadmium (Cd) and zinc (Zn) hyperaccumulator (Sedum plumbizincicola) was grown with or without a collembolan (Folsomia candida), and plant transcriptome and hormones as well as the root characteristics of S. plumbizincicola were analyzed. F. candida promoted the growth and Cd/Zn uptake of S. plumbizincicola, the root and shoot biomass increasing by 53.3 and 34.4%, and the uptake of Cd and Zn in roots increased by 83.2 and 65.4%, respectively. Plant root morphology, total root length, root tip number and lateral root number increased significantly by 40.7, 37.2 and 33.8%, respectively, with the addition of F. candida. Transcriptome analysis reveals that the expression levels of defense-related genes in S. plumbizincicola were significantly up-regulated. In addition, the defensive plant hormones, i.e. salicylic acid in the roots, increased significantly by 338%. These results suggest that the plant in defense of the action of F. candida regulated the expression of the corresponding genes and increased the defensive plant hormones, thus modifying root morphology and plant performance. Overall, this study highlights the importance of the regulation by collembolans of plant growth and metal uptake by interaction with hyperaccumulator roots.
显示更多 [+] 显示较少 [-]