细化搜索
结果 1681-1690 的 6,536
Biological nitrification inhibitor for reducing N2O and NH3 emissions simultaneously under root zone fertilization in a Chinese rice field
2020
Yao, Yuanlin | Zeng, Ke | Song, Yuzhi
Rice fields significantly contribute to the global N₂O and NH₃ emissions. Nitrification inhibitors (NIs) show promise in decreasing N₂O emission, but they can increase NH₃ volatilization under traditional broadcasting. Root zone fertilization (RZF) can mitigate NH₃ volatilization, but it may pose a high risk to N₂O emission. Additionally, most chemical NIs have limited availability and potential for environmental contamination, in contrast, biological NIs, such as methyl 3-(4-hydroxyphenyl) propionate (MHPP), are easily available and eco-friendly. However, the effects of RZF combined with MHPP on N₂O and NH₃ emissions are unknown. Therefore, a field experiment was conducted in a Chinese rice field with five treatments at 210 kg urea-N ha⁻¹ (BC: 3-split surface broadcasting; BC + MHPP: BC with MHPP; RZ, root zone fertilization; RZ + MHPP, RZF with MHPP; RZ + MHPP + NBPT, RZF with MHPP and NBPT). The results showed that although RZ eliminated NH₃ volatilization, it significantly increased total N₂O emission by 761% compared with BC due to the stimulation of nitrification by mid-season aeration (MSA) and the trigger of denitrification by a large amount of NO₃⁻. Nearly 90% N₂O was emitted at MSA stage for RZF treatments, and their N₂O fluxes were exponentially related to the soil NO₃⁻-N concentrations in the 7–20 cm deep soil layer. RZ + MHPP greatly reduced the peak values of N₂O flux due to the suppression of nitrification by MHPP and then less production of NO₃⁻ for denitrification, its total N₂O emission was 79% lower compared with that of RZ. However, RZ + MHPP + NBPT further increased the total N₂O emission by 1044% compared with that of BC. Compared to BC, the RZF practice reduced total NH₃ volatilization by 88–92% regardless use of NIs. RZF had no influence on CH₄ emissions and enhanced the rice yields. In conclusion, RZF + MHPP is a promising strategy for simultaneously reducing N₂O and NH₃ emissions in rice fields.
显示更多 [+] 显示较少 [-]Benthic trace metal fluxes in a heavily contaminated bay in China: Does the sediment become a source of metals to the water column?
2020
Li, Li | Zhen, Xiaotong | Wang, Xiaojing | Ren, Yijun | Hu, Limin | Bai, Yazhi | Liu, Jihua | Shi, Xuefa
Over three different seasons, seawater, porewater and sediment samples were collected from Jinzhou Bay, a previously heavily contaminated bay, to quantitatively assess the benthic flux of trace metals after a reduction in fluvial/sewage discharge for almost three decades. The spatial distribution patterns of trace metals in seawater, surface sediment, as well as the vertical distribution patterns of metals in porewater and solid phases in short sediment cores were reported. Metal concentrations in seawater and sediment all showed much higher Cd and Zn concentrations inside the Jinzhou Bay compared to the rest of Bohai Sea area. Zn, Ni, Pb and Co all had average benthic fluxes coming out of the sediments to the water column, contributing about 0.5%, 0.3%, 1.4% and 14% to their current standing stock in Jinzhou Bay. Seasonal difference was also identified in seawater and porewater, as well as in the benthic fluxes. In general, benthic fluxes and porewater concentrations all tended to be higher in summer, implying a close relationship between benthic flux and the temperature-dependent organic matter degradation process at the sediment-water interface.Currently, there are clearly still other sources, possibly fluvial/sewage discharge, as the main source of trace metals in Jinzhou Bay waters. For Cd and Cu, concentrations in the water column remain high on an annual basis indicating that sediment still acts as a sink. Conversely, for Pb, Zn, Co, and Ni, the sediment is beginning to act as a source to the water column. Although this may not yet be significant, it will become more and more important with time, and can last for hundreds to thousands of years.
显示更多 [+] 显示较少 [-]Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication
2020
Yang, Chunhui | Yang, Pan | Geng, Jian | Yin, Hongbin | Chen, Kaining
It is well known that sediment internal loading can worsen lake water quality for many years even if effective measures have been taken to control external loading. In this study, a 12-month field study was carried out to reveal the relationship between sediment phosphorus (P) and nitrogen (N) forms as well as their fluxes across sediment-water interface from the most polluted area of Lake Chaohu, a large shallow eutrophication lake in China. The possible contribution of mobile fraction of P and N to lake eutrophication is also analyzed. The results indicate that the content of total P and N and their forms in water and sediment were rather dynamic during the year-long field investigation. Low concentrations of P and N from sediment and overlying water were observed in the winter but increased sharply in summer. The phosphate and ammonium fluxes showed evident seasonal variation, and higher fluxes can be observed in warmer seasons especially during the period of algal bloom with high sedimentation. The reduction of ferric iron and degradation of organic matter could be responsible for the increased P flux from sediment in algal bloom seasons, which is consistent with the seasonal variation of P forms in sediment. A comparison of the mole ratio of P flux:N flux to both the P:N mole ratio in sediments and the Redfield ratio was used to further distinguish the dominant sediment P forms’ release during seasonal variation. Moreover, the anoxic condition and enhanced microbial activity in warmer seasons contribute a lot to the ammonium release from sediment. Consequently, the nutrient fluxes seasonally influence their corresponding nutrient concentrations in the overlying water. The results of this study indicate that sediment internal loading plays an important role in the eutrophication of Lake Chaohu.
显示更多 [+] 显示较少 [-]Mapping of atmospheric heavy metal deposition in Guangzhou city, southern China using archived bryophytes
2020
Wu, Liqin | Fu, Shanming | Wang, Xiaohong | Chang, Xiangyang
Atmospheric heavy metal contamination is becoming a serious threat to environmental and human health in Chinese megacities. This study evaluated the concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) and Pb isotopic compositions in herbarium and native bryophytes collected from Guangzhou from 1932 to 2018. Relatively low mean metal concentrations were measured for bryophytes collected in the 1930s. The highest mean concentrations of Cd (0.72 ± 0.32 mg/kg), Cu (28.1 ± 9.8 mg/kg), Pb (125.9 ± 62.4 mg/kg) and Zn (273 ± 130 mg/kg) were found in the bryophytes from 1979 to 2000, following the commencement of the Reform and Opening-Up Program in 1978. The mean Pb concentrations (74.7 ± 6.3 mg/kg) decreased sharply from 2001 onwards, following the cessation of leaded petrol across the Chinese mainland in 2000. However, these values are still higher than those in 1950–1978, corresponding to a significant increase in atmospheric Pb emissions from coal combustion, nonferrous metal smelting and motor vehicle petrol consumption in China in the 2000s. The lead isotopic ratios of bryophyte archives (²⁰⁶Pb/²⁰⁷Pb 1.141–1.229, ²⁰⁸Pb/²⁰⁷Pb 2.376–2.482) indicate that lithogenic input and anthropogenic input arising from leaded petrol and industrial emissions have been the main sources of atmospheric heavy metal deposition in the city of Guangzhou over the past 85 years. Herbarium bryophyte can be utilised to reconstruct temporal and spatial shifts in atmospheric heavy metal deposition to better understand and manage the current air quality in Chinese megacities.
显示更多 [+] 显示较少 [-]Irrigation of radish (Raphanus sativus L.) with microcystin-enriched water holds low risk for plants and their associated rhizopheric and epiphytic microbiome
2020
Petrou, M. | Karas, P.A. | Vasileiadis, S. | Zafiriadis, I. | Papadimitriou, T. | Levizou, E. | Kormas, K. | Karpouzas, D.G.
Microcystins (MCs) are toxins produced during cyanobacterial blooms. They reach soil and translocated to plants through irrigation of agricultural land with water from MC-impacted freshwater systems. To date we have good understanding of MC effects on plants, but not for their effects on plant-associated microbiota. We tested the hypothesis that MC-LR, either alone or with other stressors present in the water of the Karla reservoir (a low ecological quality and MC-impacted freshwater system), would affect radish plants and their rhizospheric and phyllospheric microbiome. In this context a pot experiment was employed where radish plants were irrigated with tap water without MC-LR (control) or with 2 or 12 μg L⁻¹ of pure MC-LR (MC2 and MC12), or water from the Karla reservoir amended (12 μg L⁻¹) or not with MC-LR. We measured MC levels in plants and rhizospheric soil and we determined effects on (i) plant growth and physiology (ii) the nitrifying microorganisms via q-PCR, (ii) the diversity of bacterial and fungal rhizospheric and epiphytic communities via amplicon sequencing. MC-LR and/or Karla water treatments resulted in the accumulation of MC in taproot at levels (480–700 ng g⁻¹) entailing possible health risks. MC did not affect plant growth or physiology and it did not impose a consistent inhibitory effect on soil nitrifiers. Karla water rather than MC-LR was the stronger determinant of the rhizospheric and epiphytic microbial communities, suggesting the presence of biotic or abiotic stressors, other than MC-LR, in the water of the Karla reservoir which affect microorganisms with a potential role (i.e. pathogens inhibition, methylotrophy) in the homeostasis of the plant-soil system. Overall, our findings suggest that MC-LR, when applied at environmentally relevant concentrations, is not expected to adversely affect the radish-microbiota system but might still pose risk for consumers’ health.
显示更多 [+] 显示较少 [-]Arsenic speciation in sea cucumbers: Identification and quantitation of water-extractable species
2020
Gajdosechova, Zuzana | Palmer, Calvin H. | Dave, Deepika | Jiao, Guangling | Zhao, Yanfang | Tan, Zhijun | Chisholm, Jeffrey | Zhang, Junzeng | Stefanova, Roumiana | Hosena, Ābula | Mester, Zoltan
With the constant quest for new sources of superfoods to supplement the largely nutrient deficient diet of the modern society, sea cucumbers are gaining increasing popularity. Three species of sea cucumbers, Cucumaria frondosa, Apostichopus californicus and Apostichopusjaponicus were collected from three geographical regions, Atlantic and Pacific coast of Canada and Yellow sea/ East China sea in China, respectively. These organisms were sectioned into parts (body wall, tentacles, internal organ, skin and muscle) and analysed for total arsenic (As) by inductively coupled plasma mass spectrometry (ICP-MS) and As species by high-performance liquid chromatography (HPLC) coupled to ICP-MS. Normal and reversed sequential extractions were optimised to address As distribution between lipids (polar and non-polar) and water-extractable fractions. Two extraction methods for water-extractable As were compared in terms of the number and the amount of extracted species. The results revealed that total As concentration and As species distribution varies significantly between sea cucumbers species. Total As in studied body parts ranged between 2.8 ± 0.52 and 7.9 ± 1.2 mg kg⁻¹, with an exception of the muscle tissue of A. californicus, where it reached to 36 ± 3.5 mg kg⁻¹. Arsenobetaine (AsB) was the most abundant As species in A. californicus and A.japonicus, however, inorganic As represented over 70% of total recovered As in the body parts of C. frondosa. Arsenosugars-328 and 482 were found in all studied body parts whereas arsenosugar-408 was only found in the skin of A. californicus. This is the first time that such a variation in As species distribution between sea cucumber species has been shown.
显示更多 [+] 显示较少 [-]Biotransformation of adsorbed arsenic on iron minerals by coexisting arsenate-reducing and arsenite-oxidizing bacteria
2020
Ye, Li | Wang, Liying | Jing, Chuanyong
Bacteria with arsenate-reducing (ars) and arsenite-oxidizing (aio) genes usually co-exist in aerobic environments, but their contrast impacts on arsenic (As) speciation and mobility remain unclear. To identify which kind of bacteria dominate As speciation under oxic conditions, we studied the biotransformation of adsorbed As on goethite in the co-existence of Pantoea sp. IMH with ars gene and Achromobacter sp. SY8 with aio gene. The incubation results show that SY8 dominated the dissolved As speciation as As(V), even though aio exhibited nearly 5 folds lower transcription levels than ars in IMH. Nevertheless, our XANES results suggest that SY8 showed a negligible effect on solid-bound As speciation whereas IMH reduced adsorbed As(V) to As(III). The change in As speciation on goethite surfaces led to a partial As structural change from bidentate corner-sharing to monodentate corner-sharing as evidenced by our EXFAS analysis. Our Mössbauer spectroscopic results suggest that the incubation with SY8 reduced the degree of crystallinity of goethite, and the reduced crystallinity can be partly compensated by IMH. The changes in As adsorption structure and in goethite crystallinity had a negligible effect on As release. The insights gained from this study improve our understanding of biotransformation of As in aerobic environment.
显示更多 [+] 显示较少 [-]Effect of substitution reaction with tin chloride in thermal treatment of mercury contaminated tailings
2020
Lee, Eun-Song | Cho, Soo-Jin | Back, Seung-Ki | Seo, Yong-Chil | Kim, Seong-Heon | Ko, Ju-In
Sites contaminated by mercury (Hg) from artisanal small-scale gold mine tailings have been found near agricultural land. For the active implementation of the Minamata Convention on Mercury, development of technology for the remediation of Hg contaminated sites is required. This study examined the conditions for the thermal treatment of Hg contaminated tailings at reduced temperature by introducing SnCl₂ as an additive. Thermogravimetric analysis (TGA) was used to identify the possibility of converting typical Hg compounds (HgO, HgS) in the environment to HgCl₂. The operation conditions for thermal treatment such as temperature, retention time, and ratio of [Cl₂]/[Hg] were derived from lab scale experiments using commercial Hg compounds (HgO, HgS), additive (SnCl₂), and tailings. The tailings with Hg content of 26.39 mg-Hg/kg were reduced to 3.87 mg-Hg/kg and 4.57 μg-g/L of leaching concentration through the application of the Korea standard leaching test. Both concentrations were below the standard limit of soil pollution and hazardous waste classification criteria. The sequential extraction procedure was applied to evaluate the Hg stability of residual tailings. The results show that this method will be effective for remediation of small scale Hg contaminated areas.
显示更多 [+] 显示较少 [-]Mitochondrial metabolism is central for response and resistance of Saccharomyces cerevisiae to exposure to a glyphosate-based herbicide
2020
Ravishankar, Apoorva | Cumming, Jonathan R. | Gallagher, Jennifer E.G.
Glyphosate-based herbicides, the most extensively used herbicides in the world, are available in an enormous number of commercial formulations with varying additives and adjuvants. Here, we study the effects of one such formulation, Credit41, in two genetically diverse yeast strains. A quantitative trait loci (QTL) analysis between a sensitive laboratory strain and a resistant strain linked mitochondrial function to Credit41 resistance. Two genes encoding mitochondrial proteins identified through the QTL analysis were HFA1, a gene that encodes a mitochondrial acetyl CoA carboxylase, and AAC3, which encodes a mitochondrial inner membrane ATP/ADP translocator. Further analysis of previously studied whole-genome sequencing data showed that, although each strain uses varying routes to attain glyphosate resistance, most strains have duplications of mitochondrial genes. One of the most well-studied functions of the mitochondria is the assembly of Fe–S clusters. In the current study, the expression of iron transporters in the transcriptome increased in cells resistant to Credit41. The levels of iron within the cell also increased in cells exposed to Credit41 but not pure glyphosate. Hence, the additives in glyphosate-based herbicides have a significant contribution to the negative effects of these commercial formulations on biological systems.
显示更多 [+] 显示较少 [-]A comparative study of root cadmium radial transport in seedlings of two wheat (Triticum aestivum L.) genotypes differing in grain cadmium accumulation
2020
Liu, Yuankun | Lu, Min | Tao, Qi | Luo, Jipeng | Li, Jinxing | Guo, Xinyu | Liang, Yongchao | Yang, Xiaoe | Li, Tingqiang
The radial transport of cadmium (Cd) is essential for Cd influx in roots. The role of radial transport pathway on the Cd translocation from root to shoot among wheat genotypes are still poorly understood. This study explored the role of apoplastic and symplastic pathway on root Cd uptake and root-to-shoot translocation in Zhenmai 10 (ZM10, high Cd in grains) and Aikang 58 (AK58, low Cd in grains). Under Cd treatment, the deposition of Casparian strips (CSs) and suberin lamellae (SL) initiated closer to the root apex in ZM10 than that in AK58, which resulted in the lower Cd concentration in apoplastic fluid of ZM10. Simultaneously, Cd-induced expression levels of genes related to Cd uptake in roots were significantly higher in AK58 by contrast with ZM10, contributing to the symplastic Cd accumulation in AK58 root. Moreover, the addition of metabolic inhibitor CCCP noticeably decreased the Cd accumulation in root of both genotypes. Intriguingly, compared to ZM10, greater amounts of Cd were sequestrated in the cell walls and vacuoles in roots of AK58, limiting the translocation of Cd from root to shoot. Furthermore, the elevated TaHMA2 expression in ZM10 indicates that ZM10 had a higher capacity of xylem loading Cd than AK58. All of these results herein suggest that the radial transport is significant for Cd accumulation in roots, but it cannot explain the difference in root-to-shoot translocation of Cd in wheat genotypes with contrast Cd accumulation in grains.
显示更多 [+] 显示较少 [-]